Angolet Pty Ltd **Amy Street, Regents Park** Transport Impact Assessment

Issue | 16 August 2017

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 244927-04

Arup Arup Pty Ltd ABN 18 000 966 165 **Arup** Level 10 201 Kent Street PO Box 76 Millers Point Sydney 2000 Australia www.arup.com

D

Contents

			Page
1	Intro	duction	1
	1.1	Background	1
	1.2	Scope	1
2	Existi	ng Conditions	2
	2.1	Site Location	2
	2.2	Existing parking and loading	3
	2.3	Road network and access	3
	2.4	Existing traffic conditions	4
	2.5	Public transport network	6
	2.6	Walking and cycling	7
3	Propo	osed development	8
	3.1	Description of proposed works	8
	3.2	Proposed site access	8
4	Trans	sport Assessment	9
	4.1	Forecast traffic generation	9
	4.2	Traffic distribution	10
	4.3	Traffic modelling	13
	4.4	Parking and loading provisions	16
	4.5	Walking and cycling access	16
5	Concl	lusions	17

Tables

Table 1: Peak hour trips generatedTable 2: Journey to Work Travel Destinations from Regents ParkTable 3: Intersection Modelling Results – AM Peak HourTable 4: Intersection Modelling Results – PM Peak Hour

Figures

Figure 1: Site context Figure 2: Site Location Figure 3: Surrounding Road Network Figure 4: 2017 peak hour traffic counts

Figure 5: Public Transport facilities in the vicinity of the site Figure 6: Cycleway Map Figure 7: Forecast Traffic Distribution Figure 8: Future (2027) traffic flows with proposed development

Appendices

Appendix A

Sidra Output Tables

1 Introduction

1.1 Background

Angolet Pty Ltd commissioned Arup to undertake a Transport Impact Assessment (TIA) for a proposed redevelopment at 2-4 Smith Street, 116-132 Amy Street and 1-9 Maunder Street in Regents Park, approximately 20km from Sydney's Central Business District. The site is bound by Amy Street to the north, Smith Street to the east and Maunder Street to the west.

The site currently contains low density detached single story residential dwellings on the seventeen individual lots. The proposal is to replace the existing properties for the construction of a medium density (townhouse) development.

Figure 1: Site context

1.2 Scope

This transport report supports the planning proposal for the proposed development in Regents Park, and will outline the following:

- Existing transport conditions;
- Forecast traffic generation;
- Road network impacts;
- Parking provision;
- Access arrangements;
- Public transport availability;
- Pedestrian and cycle linkages.

2 Existing Conditions

2.1 Site Location

The site is located at the intersections of Amy Street/ Maunder Street and Amy Street/ Smith Street, within the suburb of Regents Park on a consolidated site area of approximately 1.3ha. The site is zoned R2 low density residential within the Auburn Local Environmental Plan (LEP) 2010.

The roads of significance in the vicinity of the site include:

- Auburn Road;
- Carlingford Street/ Park Road;
- Joseph Street

The existing site contains 17 individual lots, each currently with low density detached single storey residential dwellings.

Figure 2: Site Location

2.2 Existing parking and loading

The existing individual lots have on-site parking spaces available. There is on-street parking demarcated along Amy Street in the vicinity of the site. Whilst there is no formal on-street parking along Maunder Street, the road width is approximately 12m which is sufficient to accommodate parking along both sides of the street without impeding traffic flow.

2.3 Road network and access

The existing 17 individual lots each have separate driveways for access to their respective properties, with all turning movements being permitted.

Amy Street, Carlingford Street, Park Road and Auburn Road are regional roads under the management of the local council, whilst Joseph Street (A6) is a state classified road under the care and control of Roads and Maritime Services.

Figure 3: Surrounding Road Network

2.4 Existing traffic conditions

Traffic counts were conducted on Tuesday 1 August 2017 at a number of intersections in the precinct, as listed below.

- Amy Street / Joseph Street / Weeroona Road
- Amy Street / Nottinghill Road
- Amy Street / Smith Street
- Amy Street / Maunder Street
- Amy Street / Kingsland Road
- Amy Street / Regent Street
- Amy Street / Auburn Road (eastern side of railway bridge)
- Amy Street / Carlingford Street / Park Road (western side of railway bridge).

The existing traffic counts are summarised in Figure 4.

Figure 4: 2017 peak hour traffic counts

2.5 **Public transport network**

The site is well served by public transport, with Regents Park train station and several bus stops located in the vicinity of the site, as presented in **Figure 4**.

Figure 5: Public Transport facilities in the vicinity of the site

2.5.1 Train Services

Regents Park Station services the area, located within ten minutes' walk of the site. Sydney Trains operates 4 train services during the peak hour on the T3 Bankstown Line to the City and 5 train services from the City.

During the afternoon peak hour 4 services operate to the CBD and 2 services operate in the opposite direction on the Bankstown Line.

Pedestrian access to the station is provided on Park Road.

2.5.2 Bus Services

There are several bus routes in the vicinity of the site. Several bus stops are located along Amy Street in the vicinity of the site. Bus stops in the immediate vicinity of the proposed site are serviced by Route 908 which provides a north-south bus link to Bankstown via Auburn and Birrong. This route also provides direct bus access to Regents Park station.

2.6 Walking and cycling

Pedestrian and cycling connectivity in the area is generally of a good standard. Concrete footpaths are provided along both sides of Amy Street for ease of walking. The cycleway map for the surrounding road network is shown in **Figure 5** below.

Figure 6: Cycleway Map

(Source: <u>www.rms.nsw.gov.au/roads/bicylcle/cyclewayfinder</u>)

3 Proposed development

3.1 Description of proposed works

The planning proposal seeks to rezone the subject site from R2 Low Density Residential to R3 Medium Density Residential.

The planning proposal does not propose any physical development at this stage. The rezoning of land does not create any direct parking, access or traffic issues. However, with a view to providing a robust assessment, the following sections provide an analysis of the potential parking, access and traffic implications of development of the site.

The following analysis has been prepared based upon an indicative yield of approximately 75 residential townhouses.

3.2 Proposed site access

It is planned that driveway accesses will be provided off Maunder Street and Smith Street. Driveway accesses to be limited to a maximum of 6m in accordance with Australian Standards

Ramps to basement parking will be located from an access driveway to avoid interrupting the visual and pedestrian continuity of the street frontages.

4 Transport Assessment

4.1 Forecast traffic generation

4.1.1 Existing Development

As previously noted, the site currently comprises of 17 detached (low density) residential dwellings which currently generate traffic on the road network. The RMS Technical Direction (TDT 2013/04a) published in August 2013 recommends a peak hour traffic generation rate for this land use type of 0.95 vehicles / dwelling (AM peak hour) and 0.99 vehicles / dwelling (PM peak hour). These rates have been adopted in the analysis.

4.1.2 **Proposed Development**

The RMS Guide to Traffic Generating Development Document recommends a peak hour traffic generation rate of between 0.5-0.65 trips / townhouse. Given the location of the site in Regents Park, approximately 10 minutes from the nearest railway station, it is considered that this rate is likely to be conservative. Notwithstanding this however, a worst case rate of 0.65 trips / dwelling has been adopted for the analysis.

Using the adopted traffic generation rate, the additional peak hour traffic resulting from the proposed development is as follows:

- Morning peak hour 49 vehicles with an 20%: 80% in: out
- Afternoon peak hour 49 vehicles with an 80%: 20% in: out

It should be noted that the trips generated by the existing residential have been discounted, as indicated in **Table 2** below. The result is a net increase of only 33 vehicle trips in the peak hour.

		Trip	Rate	Trips Gen		In: Out Split				
Land Use	Dwellings	A N /	РМ	A N /	DM	A	Μ	PM		
		AM	PM	AM	PM	In	Out	In	Out	
Residential	75	0.65	0.65	49	49	10	39	39	10	
Existing Residential	17	0.95	0.99	16	16	3	13	13	3	
Net Trips In/Out						7	26	26	7	
Total Additional T	rips per Pea	k Hour	•				33	3	3	

Table 1: Peak hour trips generated

4.1.3 Background traffic growth

The assessment has considered a 10 year design horizon, assuming a traffic growth rate of 1.5% per annum. This is commensurate with rates of traffic growth in the precinct in recent years (based historical RMS traffic data for Joseph Street).

4.2 Traffic distribution

The general future distribution of the proposed development has been estimated from the 2011 Census Data for Journey to Work car travel for residents of the locality of Regents Park. The destination of existing residents driving to work from the Regents Park area is summarised in **Table 3**.

Table 2: Journey to Work Travel Destinations from Regents Park

Destination LGA	Proportion of Total Trips
Auburn	18%
Bankstown	15%
Parramatta	7%
Fairfield	6%
Canada Bay	5%
Strathfield	5%
Sydney	4%
Blacktown	4%
Liverpool	4%
Canterbury	3%
Holroyd	3%
Ryde	2%
Other	21%
Total	100%

Source: Bureau of Transport Statistics Journey to Work Explorer (NSW Government, 2014)

The distribution applied to the local road network shows the most likely routes which will be taken by future vehicular traffic travelling to/ from the site. **Figure 7** depicts the local road proportions from the site in the morning peak, with traffic flows in the opposite direction to the site in the afternoon peak.

Figure 7: Forecast Traffic Distribution

The traffic generated by the proposed development was then assigned to the road network for the morning and afternoon peak hours. 10 years of background traffic growth was also added to the existing vehicle numbers, with forecast future traffic flows illustrated in Figure 8.

Figure 8: Future (2027) traffic flows with proposed development

4.3 Traffic modelling

The intersections have been assessed using RMS approved software SIDRA V6.1. In urban areas, the traffic capacity of the major road network is generally a function of the performance of key intersections. This performance is quantified in terms of Level of Service (LOS), is based on the average delay per vehicle. LOS ranges from A = very good to F = unsatisfactory.

Another common measure of intersection performance is the degree of saturation (DOS), which provides an overall measure of the capability of the intersection to accommodate additional traffic. A DOS of 1.0 indicates that an intersection is operating at capacity. The desirable maximum degree of saturation for an intersection is 0.9.

The existing intersection performance is assessed in this report in terms of the following three factors for each intersection:

- Degree of Saturation;
- Average Delay (Seconds per vehicle);
- Level of Service.

The modelling has assessed the operation of all intersections surveyed in August 2017, as detailed in Section 2.4.

4.3.1 Modelling Results

The following scenarios were analysed:

- Existing year conditions;
- Future year (2027) conditions, without development (i.e. future base)
- Future year (2027) conditions, with proposed development (i.e. future base + development)

The results of the analysis are summarised in **Table 3** and **Table 4**on the following pages. The detailed traffic modelling outputs are provided in the **Appendix A**.

SIDRA Intersection Results - AM Peak Hour

	_			Exis	sting					Fut	ture					Future	w/ Dev		
Amy / Regent	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
Amy East	Т	637	0.34	0	А			733	0.39	0.1	А			747	0.4	0.1	А		
Any case	R	21	0.34	4.6	А			24	0.39	4.6	А			24	0.4	4.6	А		
Regent	L	67	0.53	14.8	В	2.8	А	77	0.93	87.3	F	9.4	А	77	0.96	109.7	F	10.7	А
-0	T	65	0.53	39.6	С			75	0.93	128.7	F			75	0.96	142.8	F		
Amy West	T R	202 653	0.37	4.6	A A	-		232 751	0.43	4.6 0.1	A			232 755	0.43	4.6 0.1	Α Δ		
Amy Street /	к	653	0.37		ating			751	0.43		ture			755	0.43	Future			
Kingsland Road	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
ingsland noda	L	13	0.1	8.7	A	rug. Delay	200	15	0.14	9.9	A	ring. Delay	200	15	0.14	10.2	A	ring. Delay	200
Kingsland S	Т	25	0.1	8.4	А			29	0.14	9.7	Α			29	0.14	10	А		
-	R	29	0.1	11.4	А			33	0.14	12.6	Α			33	0.14	12.9	А		
	L	3	0.49	5.6	Α			3	0.58	6	Α			3	0.6	6	А		
Amy East	Т	443	0.49	5.3	Α			509	0.58	5.7	Α			532	0.6	5.8	А		
	R	93	0.49	8.2	Α	6.4	А	107	0.58	8.7	Α	7.2	А	107	0.6	8.7	А	13.7	А
	L	81	0.37	8.4	А	0.1		93	0.47	10.7	Α	7.2		93	0.48	11	А	13.7	
Kingsland N	T	9	0.37	8.2	A	-		10	0.47	10.5	A			10	0.48	10.8	A	-	
	R	175	0.37	11.1	A	-		201	0.47	13.4	A			201	0.48	13.7	A	-	
A	L	140	0.58	5.3	A	-		161	0.68	5.8	A			161	0.69	5.8	A A	-	
Amy West	T R	550 11	0.58	5.1 8	A	-		633 11	0.68	5.6 8.5	A			646 11	0.69	5.6 8.5	A	-	
		11	0.38		sting			11	0.08		ture			11	0.09	Future	w/Dev		
Amy / Maunder	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
	L	13	0.04	6.6	A			15	0.06	7.1	A			15	0.07	7.3	A		
Maunder	R	8	0.04	15.4	B			9	0.06	20.8	B			9	0.07	22.1	B		
Amy Fast	L	2	0.28	4.6	А	0.2		2	0.32	4.6	А	0.2		2	0.33	4.6	А	22.1	в
Amy East	Т	535	0.28	0	Α	0.2	А	615	0.32	0	А	0.3	А	639	0.33	0	А	22.1	8
Amy West	Т	711	0.37	0	Α			817	0.43	0.1	А			817	0.43	0.1	А		
Any West	R	13	0.37	4.6	А			15	0.43	4.6	А			28	0.43	4.6	А		
Amy / Smith	Turn				ting						ture					Future		1.	
		Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
Smith	L	9	0.01	6.6	A			11	0.02	7.1	A			35	0.15	7.3	A		
	R	1	0.01	15.6	B	-		1	0.02	21.3	В			21	0.15	22.7	B		
Amy East	L	1 541	0.3	4.6 0	A	0.1	Α	1 622	0.32	4.6	A	0.1	Α	12 622	0.33	4.6 0	A A	22.7	В
	Т	734	0.38	0.1	A	-		844	0.32	0.1	Δ			844	0.33	0.1	Δ		
Amy West	R	4	0.38	4.6	A			5	0.44	4.6	Δ			5	0.44	4.6	Δ		
			0.50		sting			3	0.111		ture			<u> </u>	0.11	Future	w/ Dev		
Amy / Nottinghill	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
	L	1	0.03	7.5	Α			1	0.04	8.3	А			1	0.04	8.4	А		
Nottinghill South	Т	16	0.03	7.2	А			18	0.04	8	А			18	0.04	8.1	А		
	R	7	0.03	10.1	Α			8	0.04	10.9	А			8	0.04	11	А		
	L	4	0.4	4.4	А			5	0.47	4.5	Α			5	0.47	4.5	А		
Amy East	Т	461	0.4	4.1	Α			531	0.47	4.2	А			541	0.47	4.2	А	-	
	R	82	0.4	7.1	A	5.3	А	95	0.47	7.2	A	5.6	А	95	0.47	7.2	A	12.3	А
	L			8.3	Α			142	0.33	9.4	A			142	0.34	9.6	А	-	
		123	0.25	0						9.1	Α			1					
Nottinghill North	Т	1	0.25	8	A			1	0.33						0.34	9.4	А	- 1	
Nottingnill North	T R	1 57	0.25 0.25	11	Α			65	0.33	12	A			65	0.34	12.3	A A		
	T R L	1 57 161	0.25 0.25 0.59	11 5	A A			65 185	0.33 0.69	12 5.3	А			65 185	0.34 0.7	12.3 5.4	A A A		
Amy West	T R L T	1 57 161 605	0.25 0.25 0.59 0.59	11 5 4.7	A A A			65 185 696	0.33 0.69 0.69	12 5.3 5.1	A A			65 185 716	0.34 0.7 0.7	12.3 5.4 5.1	A A A A		
Amy West	T R L T R	1 57 161	0.25 0.25 0.59	11 5 4.7 7.6	A A A A			65 185	0.33 0.69	12 5.3 5.1 8	A A A			65 185	0.34 0.7	12.3 5.4 5.1 8.1	A A A A A		
	T R L T	1 57 161 605 1	0.25 0.25 0.59 0.59 0.59	11 5 4.7 7.6 Exis	A A A A sting	Avg. Delav	LoS	65 185 696 1	0.33 0.69 0.69 0.69	12 5.3 5.1 8 Fut	A A A ture	Avg. Delav	LoS	65 185 716 1	0.34 0.7 0.7 0.7	12.3 5.4 5.1 8.1 Future	A A A A A w/Dev	Avg. Delav	LoS
Amy West	T R L T R	1 57 161 605	0.25 0.25 0.59 0.59	11 5 4.7 7.6	A A A A	Avg. Delay	LoS	65 185 696	0.33 0.69 0.69	12 5.3 5.1 8	A A A	Avg. Delay	LoS	65 185 716	0.34 0.7 0.7	12.3 5.4 5.1 8.1	A A A A A	Avg. Delay	LoS
Amy West	T R L T R Turn	1 57 161 605 1 Volume	0.25 0.25 0.59 0.59 0.59 0.59	11 5 4.7 7.6 Exist Avg. Delay	A A A A sting	Avg. Delay	LoS	65 185 696 1 Volume	0.33 0.69 0.69 0.69 DoS	12 5.3 5.1 8 Fut Avg. Delay	A A A ture	Avg. Delay	LoS	65 185 716 1 Volume	0.34 0.7 0.7 0.7 DoS	12.3 5.4 5.1 8.1 Future Avg. Delay	A A A A A w/Dev	Avg. Delay	LoS
Amy West Amy / Joseph / Weeroona	T R T R Turn L T R	1 57 161 605 1 Volume 387 2655 227	0.25 0.25 0.59 0.59 0.59 0.59 DoS 1.01 1.01 0.63	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9	A A A LoS F F F	Avg. Delay	LoS	65 185 696 1 Volume 445 3053 261	0.33 0.69 0.69 0.69 DoS 1.18 1.18 0.755	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 69.7	A A LoS F F E	Avg. Delay	LoS	65 185 716 1 Volume 447 3053 261	0.34 0.7 0.7 0.7 DoS 1.18 1.18 0.83	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6	A A A A w/ Dev LoS F F F	Avg. Delay	LoS
Amy West Amy / Joseph / Weeroona Joseph South	T R T R Turn L T R L	1 57 161 605 1 Volume 387 2655 227 94	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.05 1.01 1.01 0.63 0.101	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8	A A A LoS F F F C	Avg. Delay	LoS	65 185 696 1 Volume 445 3053 261 107	0.33 0.69 0.69 0.69 0.69 0.69 1.18 1.18 0.755 0.116	12 5.3 5.1 8 Fut 236.7 231.1 69.7 29	A A Lure F F E C	Avg. Delay	LoS	65 185 716 1 Volume 447 3053 261 107	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27	A A A w/ Dev LoS F F F B	Avg. Delay	LoS
Amy West Amy / Joseph / Weeroona	T R T R Turn L T R L T	1 57 161 605 1 Volume 387 2655 227 94 56	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6	A A A LoS F F F C C	Avg. Delay	LoS	65 185 696 1 Volume 445 3053 261 107 64	0.33 0.69 0.69 0.69 0.69 0.118 1.18 0.755 0.116 0.116	12 5.3 5.1 8 Fut 236.7 231.1 69.7 29 42	A A Lure F F E C D	Avg. Delay	LoS	65 185 716 1 Volume 447 3053 261 107 65	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8	A A A W/Dev LoS F F F B C	Avg. Delay	LoS
Amy West Amy / Joseph / Weeroona Joseph South	T R L T R L L R L T R R	1 57 161 605 1 Volume 387 2655 227 94 56 1	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.05 1.01 1.01 0.63 0.101 0.101	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9	A A A ting LoS F F C C C	Avg. Delay	LoS	65 185 696 1 Volume 445 3053 261 107 64 1	0.33 0.69 0.69 0.69 0.69 0.69 0.69 0.118 1.18 1.18 0.755 0.116 0.116	12 5.3 5.1 8 Avg. Delay 236.7 231.1 69.7 29 42 47.3	A A Lure F F C C D D	Avg. Delay	LoS	65 185 716 1 Volume 447 3053 261 107 65 1	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9	A A A A W/Dev LoS F F F B B C D	Avg. Delay	LoS
Amy West Amy / Joseph / Weeroona Joseph South Weeroona	T R T T R T T R L T R L L	1 57 161 605 1 Volume 387 2655 227 94 56 1 129	0.25 0.25 0.59 0.59 0.59 0.59 0.05 1.01 1.01 1.01 0.63 0.101 0.101 0.101	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2	A A A LoS F F F C C			65 185 696 1 Volume 445 3053 261 107 64 1 148	0.33 0.69 0.69 0.69 0.69 0.05 1.18 1.18 1.18 0.755 0.116 0.116 0.116 0.746	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 69.7 29 42 47.3 46.5	A A LoS F E C D D D			65 185 716 1 Volume 447 3053 261 107 65 1 148	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.18 0.13 0.12 0.12 0.12 0.77	12.3 5.4 5.1 8.1 Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2	A A A W/Dev LoS F F F B C D D		
Amy West Amy / Joseph / Weeroona Joseph South	T R L T T R L L T R L L T T R	1 57 161 605 1 Volume 387 2655 227 94 56 1 1 129 1518	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.63 0.101 0.101 0.101 0.65 0.65	11 5 4.7 7.6 Exis 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.2	A A A LoS F F C C C C C F F			65 185 696 1 Volume 445 3053 261 107 64 1 1 148 1745	0.33 0.69 0.69 0.69 0.69 0.118 1.18 1.18 0.755 0.116 0.116 0.116 0.116 0.746	12 5.3 5.1 8 Fut 236.7 231.1 69.7 29 42 47.3 46.5 39.6	A A Lure F F C C D D			65 185 716 1 Volume 447 3053 261 107 65 1 1 148 1745	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.18 1.18 1.18 0.83 0.12 0.12 0.12 0.12 0.77 0.77	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2	A A A A W/Dev LoS F F F B B C D		
Amy West Amy / Joseph / Weeroona Joseph South Weeroona	T R L T T R L T R L T R L T R R	1 57 161 605 1 2655 227 94 56 1 129 1518 113	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.63 0.101 0.101 0.101 0.65 0.65 0.65	11 5 4.7 7.6 Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.2 159.4	A A A LoS F F C C C C C C F F F			65 185 696 1 Volume 445 3053 261 107 64 1 148 1745 129	0.33 0.69 0.69 0.69 0.69 0.118 1.18 1.18 0.755 0.116 0.116 0.116 0.116 0.746 0.746 1.12	12 5.3 5.1 8 Fut 236.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1	A A Lure LoS F E C D D D D C C			65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.77 0.77 1.2	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8	A A A A V/Dev LoS F F B C D C D C C		
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North	T R L T R L T R L L T R L L L	1 57 161 605 387 2655 227 94 56 1 129 4 56 1 121 8 1518 113	0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis 225.5 118.6 166.9 31.8 35.6 39.9 164.2 159.4 159.4 36.8	A A A LoS F F C C C C F F F F C			65 185 696 1 445 3053 261 107 64 1 148 1745 129 168	0.33 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.118 0.116 0.116 0.116 0.746 0.746 1.12 0.628	12 5.3 5.1 Avg. Delay 236.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1 51.1	A A A ture F F C D D D C C F C			65 185 716 1 Volume 447 3053 261 107 65 1 107 65 1 148 1748 1322 173	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65	12.3 5.4 5.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 44	A A A A V/Dev LoS F F B C C D C C F D C C F		
Amy West Amy / Joseph / Weeroona Joseph South Weeroona	T R L T R L T R L T R L T R L T	1 57 161 605 1 Volume 387 2655 227 94 56 1 129 1518 113 146	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exist Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.2 159.2 159.4 36.8 32.2	A A A LoS F F C C C C C C F F F			65 185 696 1 Volume 445 3053 261 107 64 1 148 1745 129 168 192	0.33 0.69 0.69 0.69 0.69 0.108 1.18 1.18 0.755 0.116 0.116 0.116 0.116 0.746 1.12 0.628 0.628	12 5.3 5.1 8 Fut 236.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1 51.1 46.5	A A Lure LoS F E C D D D D C C			65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65	12.3 5.4 5.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 244 39.4	A A A A V/Dev LoS F F B C D C D C C		
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St	T R T R U T R L T R L T R L T R L T R	1 57 161 605 387 2655 227 94 56 1 129 4 56 1 121 8 1518 113	0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.2 159.4 36.8 32.2 185	A A A LoS F F C C C C F F F F C			65 185 696 1 445 3053 261 107 64 1 148 1745 129 168	0.33 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.118 0.116 0.116 0.116 0.746 0.746 1.12 0.628	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 69.7 239.4 42 47.3 46.5 39.6 211.1 51.1.4 65. 253.9	A A Lure LoS F E C D D D D C C C D C C D C C C D C C C D C C C D C C D C D C C D C D C C C D C			65 185 716 1 Volume 447 3053 261 107 65 1 107 65 1 148 1748 1322 173	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65	12.3 5.4 5.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 44	A A A A W/Dev LoS F F B C C D C C F C C F C		
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North	T R L T R L T R L T R L T R L T	1 57 161 605 1 Volume 387 2655 227 94 56 1 129 1518 113 146	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.2 159.4 36.8 32.2 185	A A A LoS F F C C C C C F F F C C C F F F C C C C F F F C C C C F			65 185 696 1 Volume 445 3053 261 107 64 1 148 1745 129 168 192	0.33 0.69 0.69 0.69 0.69 0.108 1.18 1.18 0.755 0.116 0.116 0.116 0.116 0.746 1.12 0.628 0.628	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 69.7 239.4 42 47.3 46.5 39.6 211.1 51.1.4 65. 253.9	A A A Uure LoS F C D D D D C C F C F D D C F C F C C F C C F C C F C C C C			65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65	12.3 5.4 5.1 8.1 Future Avg Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 44 39.4 274.9	A A A A W/Dev LoS F F B C C D C C F C C F C		
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park	T R T R U T R L T R L T R L T R L T R	1 57 605 1 Volume 387 2655 227 94 56 1 1 255 56 1 1 129 951 8 56 1 1 129 94 56 31 31 46 166 343	0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exist Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.4 36.8 32.2 159.4 36.8 32.2 Exist	A A A LoS F F C C C C C F F F C C C F F F C C C C F F F C C C C F	130.5	F	65 185 696 1 1 Volume 445 3053 261 107 64 1 148 1745 129 168 192 395	0.33 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.118 0.755 0.116 0.116 0.746 1.12 0.628 0.628 0.628	12 5.3 5.1 8 Fut 236.7 231.1 69.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1 51.1 46.5 253.9 Fut	A A A Lure LoS F E C D D D C F C F D D C F C F C D C F C C F C D C C F C D C C C C	157.4	F	65 185 716 1 1 Volume 447 3053 261 107 65 1 1 148 1745 132 173 196 405	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65 0.65	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 44 39.4 45.2 267.8 44 39.4 274.9 Future	A A A A V/Dev LoS F F B C D D C C F D C C F C C F V D V C C F V C C F C C F C C C F C C C F C C C C	161.8	F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St	T R L T R L T R L T R L T R L T R R T R R T R	1 57 161 605 1 387 2655 227 94 56 1 129 1518 113 146 166 343 Volume 604 355	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.63 0.101 0.101 0.63 0.65 0.65 0.65 0.977 0.558 0.558 1.02 DoS 1.02	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.8 32.2 Exis Avg. Delay 67.2 83.1	A A A A A C F F C C C C C F F F C C C C	130.5	F	65 185 696 1 Volume 445 3053 261 107 64 1 1 148 1745 129 168 192 395 395 Volume 696 6408	0.33 0.69 0.69 0.69 0.69 0.69 0.118 1.18 1.18 0.755 0.116 0.116 0.116 0.116 0.116 0.746 0.746 0.746 0.746 1.12 0.628 0.628 1.135 1.35	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 236.7 29 42 47.3 46.5 39.6 211.1 51.1 46.5 211.1 51.1 46.5 211.1 51.1 46.5 213.1 51.1 40.5 213.1 51.1 40.5 213.1 51.1 51.1 51.1 51.1 51.1 51.1 51.1	A A A Lure LoS F C D D C C F C C F C D C C F C C C F C C C C	157.4	F	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 173 196 405 Volume 696 409	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65 0.65 0.65 1.2 0.75 0.75 0.75 0.75 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 44 39.4 274.9 Future Avg. Delay 281 345	A A A A V/Dev LoS F F F B B C D D C C F C C F C C F C C F C C F C C F F F F C C F F C C F	161.8	F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford	T R L T R L T R L L T R L T R R L T T R L L	1 57 161 605 1 Volume 387 2655 227 94 56 1 1 129 95 1518 113 146 343 343 Volume 604 355 315	0.25 0.25 0.59 0.59 0.59 0.59 0.59 1.01 1.01 0.63 0.101 0.101 0.101 0.65 0.65 0.977 0.558 1.02 DoS 1.06 1.06 0.42	11 5 4.7 7.6 Exis Avg. Detay 125.5 118.6 35.6 39.9 164.2 159.4 36.8 32.2 159.4 36.8 32.2 185 Exis Avg. Detay 67.2 83.1 6.6	A A A LoS F F C C C C C C C C C C F F C C C C C	130.5 Avg. Delay	F	65 185 696 1 445 3053 261 107 64 1 148 1745 129 168 192 395 Volume 696 408 362	0.33 0.69 0.69 0.69 1.18 1.18 0.755 0.116 0.116 0.116 0.116 0.746 0.746 1.12 0.628 0.628 1.18 DoS 1.35 1.35 0.52	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1 46.5 39.6 211.1 46.5 233.9 Fut Vag. Delay 273 335.3 8.3	A A Lure LoS F E C D D D C C F C D D C C F C D C C C C C	157.4 Avg. Delay	F	65 185 716 1 Volume 447 3053 261 107 65 1 107 65 1 148 1745 132 173 196 405 Volume 696 6409 365	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65 0.65 1.2 DoS 1.36 1.36 0.52	12.3 5.4 5.1 8.1 Future Avg_Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 245.2 38.2 267.8 44 39.4 274.9 Future Avg_Delay 281 345 8.4	A A A A A A A C C D C C D C C C C C C C	161.8 Avg. Delay	F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park	T R L T R L T R L L R L T R L R T R R T R R R T R R R R R R R R R R R R R	1 57 161 605 1 2655 227 94 527 94 1 129 1518 113 146 146 343 Volume 604 604 604 355 315 528	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.4 36.8 32.9 159.4 36.8 32.2 159.4 36.8 32.2 Exis Exis	A A A A F F C C C C F F F C C C F F C C C F F C C C F F C C C C F F C C C C C F	130.5	F	65 185 696 1 445 3053 261 107 64 1 148 1745 129 168 192 168 192 168 192 168 192 168 192 168 192 636 408 362 607	0.33 0.69 0.69 0.69 0.69 0.69 0.69 0.118 0.116 0.116 0.116 0.116 0.746 1.12 0.628 0.628 0.628 1.18 1.35 1.35 1.35 1.35 0.52 0.74	12 5.3 5.1 8 Fut 236.7 236.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1 51.1 46.5 39.6 211.1 51.1 46.5 253.9 Fut 253.9 Fut 253.9 Fut 253.9 273 355.3 8.3 31.2 5	A A Lure F F C D D D C C F C C F C C F C C C F C C C F C C C F C	157.4	F	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196 606 609 606 609 613	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65 1.2 0.65 1.2 0.65 1.2 0.55 0.75	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 267.8 267.8 267.9 Future Avg. Delay 281 345 8.4 12.7	A A A A LoS F F B C C D C C F C C F C C F C C F C C F C C F C C F C C F C C F C C F C C C F C	161.8	F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford	T R L T T R L T R L T R L T R R L T T R R L L L L	1 57 161 605 1 2655 227 94 56 1 129 1518 113 146 166 343 43 Volume 604 355 315 528 360	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 4 36.8 32.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 8 31.6 8 3.1 8 3.6 3.6 3.6 3.6 3.6 3.6 3.7 10 10 10 10 10 10 10 10 10 10 10 10 10	A A A LoS F C C C C C F F C C C C F F C C C C F F C C C C F F C C C C C F F F C C C C C C C C C C F	130.5 Avg. Delay	F	65 185 696 1 445 3053 261 107 64 1 148 1745 192 395 95 96 60 408 362 607 414	0.33 0.69 0.69 0.69 0.69 0.69 0.118 1.18 0.755 0.116 0.746 0.746 0.746 0.746 0.746 0.746 0.746 1.12 0.628 0.628 1.18 1.35 1.35 0.52 0.74 0.742	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 29 42 47.3 46.5 39.6 211.1 51.1 46.5 211.1 51.1 46.5 211.1 51.1 46.5 211.1 51.1 40.5 213.1 8 335.3 8.3 335.3 8.3 12.5 7.9	A A A ture LoS F C D D D D C C F D D D C C F C C F C C F C C F C C F C C C F C C C C F C	157.4 Avg. Delay	F	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 173 196 405 Volume 696 409 365 613 417	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65 0.65 1.2 0.65 1.36 0.52 0.75 0.42	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 44 39.4 274.9 Future Avg. Delay 281 345 8.4 12.7 7.9	A A A A A A A A C C C C C C C C C C C C	161.8 Avg. Delay	F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford Auburn Road	T R L T R L T R L L R L T R L R T R R T R R R T R R R R R R R R R R R R R	1 57 161 605 1 2655 227 94 527 94 1 129 1518 113 146 146 343 Volume 604 604 604 355 315 528	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 35.6 35.6 35.6 39.9 164.2 159.4 36.8 32.2 159.4 36.8 32.2 185 ± Xvg. Delay 67.2 83.1 6.6 9.2 8.8 8 6.7	A A A LoS F C C C C F F C C C F F C C C F F C C C F F C C C F F F C C C C C F F F A A A A	130.5 Avg. Delay	F	65 185 696 1 445 3053 261 107 64 1 148 1745 129 168 192 168 995 Volume 696 408 362 607	0.33 0.69 0.69 0.69 0.69 0.69 0.69 0.118 0.116 0.116 0.116 0.116 0.746 1.12 0.628 0.628 0.628 1.18 1.35 1.35 1.35 1.35 0.52 0.74	12 5.3 5.1 8 Fut Avg. Detay 236.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1 51.1 46.5 253.9 Fut A46.5 253.9 Fut A46.5 253.9 Fut 8.3 335.3 8.3 335.3 8.3 6.6	A A A F F C D D D C C F C C D D C F C C C F C C C C	157.4 Avg. Delay	F	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196 606 609 606 609 613	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65 1.2 0.65 1.2 0.65 1.2 0.55 0.75	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 44 39.4 274.9 Future Avg. Delay 281 345 8.8.4 12.7 7.9 6.6	A A A A A A LoS F F B B C D D D C C C F F C D D C C F F C C C F F A A A A A A A A A A A	161.8 Avg. Delay	F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford Auburn Road	T R L T T R L T R L T R L T R R L T T R R L L L L	1 57 161 605 1 2655 227 94 527 94 1 129 1518 113 146 166 343 Volume 604 355 315 528 360 422	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.4 159.4 36.8 32.2 159.4 36.8 32.2 159.4 Xog. Delay 67.2 83.1 6.6 9.2 8.6 6.7 6.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8	A A A LoS F C C C C F F C C C C F F C C C C F F F C	130.5 Avg. Delay 32.0	F LoS C	65 185 696 1 Volume 445 3053 261 107 64 1 148 1745 129 168 192 168 192 168 192 168 192 168 192 168 192 395 395 0 362 607 414 485	0.33 0.69 0.69 0.69 0.69 0.69 0.118 0.755 0.116 0.116 0.746 0.746 0.746 0.746 0.746 0.628 0.628 0.628 1.135 1.35 0.52 0.74 0.42 0.43	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1 51.1 46.5 39.6 211.1 51.1 46.5 253.9 Fut Avg. Delay 273 335.3 8.3 8.3 12.5 7.9 6 6.7 Fut	A A A Cure C F C D D D D C C F C C F C D D D C C F C C C C	157.4 Avg. Delay 115.7	F LoS F	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196 606 609 606 606 403 365 417 485	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 247.9 Future Avg. Delay 281 345 8.4 12.7 7.9 6.6 6.6	A A A A A C C F F F F F F F C C C C C C	161.8 Avg. Delay 118.6	F LoS F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford Auburn Road Park Road	T R L T T R L T R L T R L T R L T R L T T R L T T T T T T T T T T T T T	1 57 161 605 1 2655 227 94 56 1 129 1518 113 146 343 343 Volume 604 355 315 528 360 422 Volume	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.4 36.8 32.2 159.4 36.8 32.2 185 8 20.2 8 36.8 32.2 185 8 40.2 Basel 6.7 8 8.3 1 6.6 9.2 8 8.1 6.6 9.2 8 8.1 6.6 9.2 185 8 8.1 6.6 9.2 185 8 8.1 6.6 9.2 185 8 8.1 6.6 9.2 185 8 185 8 185 8 185 185 185 185 185 1	A A A LoS F C C C C C F F C C C C F F C C C C F F C	130.5 Avg. Delay	F	65 185 696 1 445 3053 261 107 64 1 148 1745 192 395 Volume 696 408 362 607 414 485 Volume	0.33 0.69 0.69 0.69 0.69 0.69 0.118 1.18 0.755 0.116 0.746 0.746 0.746 0.746 0.746 0.746 0.746 0.746 0.746 1.12 0.628 1.18 1.35 1.35 0.52 0.74 0.42 0.43	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 8 405 239.4 239.4 247.3 46.5 39.6 211.1 51.1 46.5 253.9 Fut Avg. Delay 6.6 Fut Fut Avg. Delay	A A A Cure C C D D C C C F C D D C C C F C C C C F C C C C	157.4 Avg. Delay	F	65 185 716 1 Volume 447 3053 261 107 65 1 1 148 1745 173 196 405 409 365 613 417 485 Volume	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.77 0.77 1.2 0.65 0.65 1.36 0.55 1.36 0.55 0.42 0.43	12.3 5.4 5.1 8.1 Future Avg. Delay 4xg. Delay 4xg. Delay 45.2 38.8 44 39.4 267.8 44 39.4 267.8 44 39.4 274.9 Future Avg. Delay 6.6 Future Avg. Delay	A A A A C F B C D D C F B C C C F D C F B C C C F B C C C C C C C C C C C C C C C C C A A A A A A C C C C C	161.8 Avg. Delay	F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford Auburn Road Park Road	T R L T R L T R L T R L T R T R L T R L T T R L T T T T R L L T T T T T T T T T T T T T	1 57 161 605 1 Volume 387 2655 227 94 56 1 1 129 95 1518 113 146 343 1518 113 146 343 343 Volume 604 355 315 528 360 422 Volume	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 35.6 35.6 39.9 164.2 159.4 36.8 32.2 159.4 36.8 32.2 185 2 185 2 185 2 8 3.2 2 185 2 8 3.2 6 6.2 8 8.1 6.6 9.2 8 8.1 6.7 Exis Avg. Delay 7.6	A A A LoS F F C C C C C F F C C C C F F C C C C	130.5 Avg. Delay 32.0	F LoS C	65 185 696 1 Volume 445 3053 261 107 64 1 148 1745 129 168 192 395 Volume 696 408 362 607 418 Volume 434	0.33 0.69 0.69 0.69 0.69 1.18 1.18 0.755 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.746 0.628 0.628 1.18 1.35 1.35 0.52 0.74 0.43 0.64	12 5.3 5.1 8 Fut 236.7 236.7 29 47.3 46.5 39.6 211.1 51.1 46.5 253.9 Fut Avg. Delay 273 335.3 8.3 12.5 7.9 6.6 Fut Avg. Delay 11.3	A A A Uure F C D D C D D C C F C C D D C C F C C C C C C C C C C C C C	157.4 Avg. Delay 115.7	F LoS F	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196 405 Volume 696 409 365 613 417 485 Volume 499	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 37 45.2 267.8 43.9 45.2 267.8 44 274.9 Future Avg. Delay 281 345 8.4 12.7 7.9 6.6 Future Avg. Delay 10.2	A A A A A A A A C C A A A A A A A A A A	161.8 Avg. Delay 118.6	F LoS F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford Auburn Road Park Road Auburn Rd	T R L T R L T R L T R L T T R L T T T T T T T T T T	1 57 161 605 1 2855 227 94 52 1 129 1518 113 146 166 343 Volume 604 355 315 528 360 422 Volume	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.63 0.101 0.63 0.101 0.65 0.65 0.977 0.558 0.558 1.02 0.558 1.02 0.558 0.038 0.042 0.61 0.38 0.39 0.39	11 5 4.7 7.6 Exist Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.4 36.8 32.9 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.8 32.2 185 Exist Avg. Delay 67.2 83.1 6.6 9.2 8 8.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6	A A A LoS F C C C C F F C C C C F F C C C C F F C C C C F F C	130.5 Avg. Delay 32.0	F LoS LoS	65 185 696 1 Volume 445 3053 261 107 64 1 148 1745 129 168 192 395 Volume 696 408 362 607 414 485 Volume 434 545	0.33 0.69 0.69 0.69 0.69 0.69 0.118 0.755 0.116 0.116 0.746 0.746 0.746 0.746 0.746 0.746 0.746 0.746 0.628 0.628 0.628 0.628 0.52 0.74 0.42 0.43 0.64	12 5.3 5.1 8 Fut Avg. Delay 236.7 231.1 69.7 29 42 47.3 46.5 39.6 211.1 51.1 46.5 39.6 211.1 51.1 46.5 253.9 Fut Avg. Delay 273 335.3 8.3 7.9 6 6 7.9 6 7.9 6 7.9 7.9 6 7.9 7.9 7.9 7.9 7.9 7.9 8.7 7.9 7.9 8.7 7.9 7.9 8.7 7.9 7.9 8.7 7.9 7.9 8.7 7.9 7.9 8.7 7.9 7.9 8.7 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7	A A A Cure C F C D D D C C F C D D C C F C C C F C C C C	Avg. Delay	F LoS F LoS	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196 405 405 409 365 613 417 485 Volume 499 553	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 247.9 Future Avg. Delay 281 345 8.4 12.7 7.9 6.6 Future Avg. Delay 10.2 8	A A A A A A C C F F F F F C C C C F F C C C C	Avg. Delay	F LoS F LoS
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford Auburn Road Park Road Auburn / Amy	T R L T R L T R L T R L T R L T R L T R L T R L T T R T R T T R T R T T R T T R T T R T T R T T R T T T R T T T R T T T R T T T T R T T T T T R T T T T T T T T T T T T T	1 57 161 605 1 2655 227 94 56 5 5 227 94 129 1518 113 113 113 113 166 343 343 Volume 604 355 315 528 315 528 360 422 Volume 434 474 295	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.63 0.101 0.101 0.101 0.65 0.65 0.65 0.65 0.558 1.02 0.558 1.02 0.58 1.06 0.42 0.61 0.38	11 5 4.7 7.6 Exit Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.2 159.4 166.9 37.2 83.1 6.6 9.2 83.1 6.6 9.2 83.1 6.6 9.2 83.1 6.6 9.2 83.1 6.5 5.2 5.5 5.2	A A A Ling LoS F F C C C C F F C C C C F F C C C C F F C C C C F F C C C C C F F C	130.5 Avg. Delay 32.0	F LoS C	65 185 696 1 445 3053 261 107 64 1 148 1745 129 168 1745 192 395 Volume 696 408 362 607 414 485 Volume 434 545 339	0.33 0.69 0.69 0.69 0.69 1.18 1.18 0.755 0.116 0.116 0.746 0.746 0.746 0.746 0.628 0.628 0.628 0.52 0.74 0.43 0.43	12 5.3 5.1 8 Fut Avg. Delay 236.7 29 47.3 46.5 39.6 211.1 51.1 46.5 233.9 Fut Avg. Delay 273 33.8 .3 8.3 12.5 7.9 6.6 Fut Vag. Delay 273 33.6 7.9 9 6.6 Fut States Fut Avg. Delay 273 375 8.3 8.3 12.5 7.9 9 6.6 Fut States Fut Avg. Delay 275 38.5 7.9 9 6.6 7.9 9 6.6 7.9 9 7.9 9 7.9 9 9 9 9 9 9 9 9 9 9 9 9	A A A CUTE F C D D D C C F D D C C F D D C C F C C C F C C C F C C C C	157.4 Avg. Delay 115.7	F LoS F	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196 405 Volume 696 613 417 485 Volume 499 553 354	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 44.2 27 38.2 267.8 44.2 27 38.2 267.8 44.2 27 26.4 27 26.4 27 26.4 27 27 27 28.4 27 28.4 27 28.4 27 29.4 28.4 27 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4	A A A A A A A A A B C C C C C C C C C C	161.8 Avg. Delay 118.6	F LoS F
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford Auburn Road Park Road Auburn Rd Auburn Rd Amy St	T R L T R L T R L T R L T T R L T T T T T T T T T T	1 57 161 605 1 Volume 387 2655 227 94 56 1 1 129 94 56 1 1 129 94 56 1 1 129 94 56 1 1 129 94 56 528 343 343 343 345 315 528 360 422 Volume 434 474 295 2404	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	11 5 4.7 7.6 Exis Avg. Delay 125.5 118.6 35.6 39.9 164.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.8 32.2 185 Exis Avg. Delay 6.6 9.2 8 6.7 Exis Avg. Delay 7.6 5.5 5.5 5.2 8.8	A A A LoS F F C C C C F F C C C C F F C C C C F F C	130.5 Avg. Delay 32.0	F LoS LoS	65 185 696 1 Volume 445 3053 261 107 64 1 148 1745 129 168 192 395 Volume 696 408 362 607 414 485 Volume 434 545 339 504	0.33 0.69 0.69 0.69 0.69 0.69 0.118 1.18 0.755 0.116 0.116 0.116 0.116 0.746 0.746 0.746 1.12 0.628 0.746 0.746 0.628 0.628 0.628 0.628 0.628 0.62 0.64 0.42 0.64 0.64 0.64 0.64 0.64 0.64 0.64	12 5.3 5.1 8 Fut 236.7 231.1 69.7 29 47.3 46.5 39.6 211.1 51.1 46.5 253.9 Fut 46.5 253.9 Fut 46.5 253.9 Fut 46.5 253.9 Fut 46.5 253.9 Fut 40.5 7 7 8.3 6 5 7 7 9 6 5 7 7 8 8.3 1 1.5 7 7 8 8.3 1.5 7 7 8 8.3 7 6 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 8 8 8 8 7 7 8	A A A Cure F C D D C C F C D D C C F C C C F C C C C	Avg. Delay	F LoS F LoS	65 185 716 1 Volume 447 3053 261 107 65 1 148 1745 132 173 196 405 Volume 696 409 365 613 417 485 Volume 499 553 354 473	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 43.9 43.9 43.2 267.8 44 39.4 274.9 Future Avg. Delay 281 345 8.8 4 12.7 7.9 6.6 Future Avg. Delay 10.2 8 8 5 5 5 5 5 5 5	A A A A A A C C F F F F F C C C C F F C C C C	Avg. Delay	F LoS F LoS
Amy West Amy / Joseph / Weeroona Joseph South Weeroona Joseph North Amy St Carlingford / Park Carlingford Auburn Road Park Road Auburn Rd	T R L T R L T R L T R L T R T R L T T R L T T R L T T R L T T R L T R L T R L T R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R R T R R R R R T R R R R T R R R R T R R R R R R R R R R R R R	1 57 161 605 1 2655 227 94 56 5 5 227 94 129 1518 113 113 113 113 166 343 343 Volume 604 355 315 528 315 528 360 422 Volume 434 474 295	0.25 0.25 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.63 0.101 0.101 0.101 0.65 0.65 0.65 0.65 0.558 1.02 0.558 1.02 0.58 1.06 0.42 0.61 0.38	11 5 4.7 7.6 Exit Avg. Delay 125.5 118.6 166.9 31.8 35.6 39.9 164.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.8 32.2 159.4 36.2 159.4 166.9 37.2 83.1 6.6 9.2 83.1 6.6 9.2 83.1 6.6 9.2 83.1 6.6 9.2 83.1 6.5 5.2 5.5 5.2	A A A Ling LoS F F C C C C F F C C C C F F C C C C F F C C C C F F C C C C C F F C	130.5 Avg. Delay 32.0	F LoS LoS	65 185 696 1 445 3053 261 107 64 1 148 1745 129 168 1745 192 395 Volume 696 408 362 607 414 485 Volume 434 545 339	0.33 0.69 0.69 0.69 0.69 1.18 1.18 0.755 0.116 0.116 0.746 0.746 0.746 0.746 0.628 0.628 0.628 0.52 0.74 0.42 0.43 0.64 0.64 0.64	12 5.3 5.1 8 Fut 236.7 231.6 69.7 29 47.3 46.5 39.6 211.1 51.1 46.5 233.9 Fut Avg. Delay 273. 335.6 211.1 51.1 46.5 253.9 Fut Avg. Delay 273. 33.5 8.3 12.5 7.9 6.6 Fut S.1 8.3 12.5 7.9 6.6 Fut S.1 8.3 8.3 12.5 7.9 5.8	A A A CUTE F C D D D C C F D D C C F D D C C F C C C F C C C F C C C C	Avg. Delay	F LoS F LoS	65 185 716 1 447 3053 261 107 65 1 148 1745 132 173 196 409 365 613 417 485 Volume 499 553 354	0.34 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	12.3 5.4 5.1 8.1 Future Avg. Delay 242 236.4 71.6 27 38.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 43.9 45.2 38.2 267.8 44.2 27 38.2 267.8 44.2 27 38.2 267.8 44.2 27 26.4 27 26.4 27 26.4 27 27 27 28.4 27 28.4 27 28.4 27 29.4 28.4 27 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4	A A A A A A A A A C A A A A A C C C C C	Avg. Delay	F LoS F LoS

SIDRA Intersection Results - PM Peak Hour

Amu / Decent	Turn			Exis	ting					Fut	ure					Future	w/ Dev		
Amy / Regent	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
Amy East	Т	762	0.4	0.1	А			876	0.47	0.1	А			880	0.47	0.1	Α		
Alliy Edst	R	33	0.4	4.6	А			38	0.47	4.6	А			38	0.47	4.6	А		
Regent	L	75	0.44	11.2	А	2.4	А	86	0.77	39.1	С	5.2	А	86	0.84	53.8	D	6.1	А
	T	53	0.44	37.1	С			61	0.77	82.7	F			61	0.81	90.9	F		
Amy West	T R	151	0.28	4.6	A			174	0.32	4.6	A			174	0.33	4.6	A		
Amy Stroot /	к	503	0.28	UExis	A			578	0.32		ture			592	0.33	0 Future	A W/Dov		
Amy Street / Kingsland Road	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
Kingsiana Noad	1	8	0.06	9.3	A	Avg. Delay	A	9	0.089	11.3	A	Avg. Delay	205	9	0.09	11.5	A	Avg. Delay	205
Kingsland S	T	15	0.06	9.3	A		A	17	0.089	11.1	A			17	0.09	11.2	A		
, , , , , , , , , , , , , , , , , , ,	R	12	0.06	12.3	А		А	14	0.089	14	В			14	0.09	14.2	В		
	L	23	0.62	6	А		А	26	0.74	8.1	А			26	0.75	8.3	А		
Amy East	Т	588	0.62	5.7	А		А	676	0.74	7.9	А			688	0.75	8.1	Α		
	R	72	0.62	8.7	А	6.2	А	83	0.74	10.8	А	7.4	А	83	0.75	11	А	7.5	А
	L	99	0.35	7.4	А	0.2	А	114	0.43	8.4	А	7.4		114	0.44	8.8	A	7.5	
Kingsland N	Т	33	0.35	7.2	A	_	A	38	0.43	8.2	A			38	0.44	8.5	A		
	R	152	0.35	10.1	Α	_	Α	175	0.43	11.1	A			175	0.44	11.5	A		
Amus March	L	82	0.43	4.7	A	-	A	94	0.5	4.9	A			94	0.52	4.9	A		
Amy West	T R	441 24	0.43	4.5 7.4	A	-	A A	507 24	0.5	4.7 7.6	A			528 24	0.52	4.7 7.6	A		
	ň	24	0.43	7.4 Exis			A	24	0.5		ture			24	0.32		w/ Dev		
Amy / Maunder	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
	L	8	0.05	8	A	ring. Delay	205	9	0.08	9.2	A	rug. Delay	200	9	0.08	9.3	A	rivg. Delay	205
Maunder	R	9	0.05	16.5	B			11	0.08	22.7	В			11	0.08	24	B		
Amu Fest	L	11	0.38	4.6	A	0.2		13	0.44	4.6	A	0.2		13	0.44	4.6	A		
Amy East	Т	734	0.38	0.1	А	0.3	А	844	0.44	0	А	0.3	A	856	0.44	0.1	А	0.4	A
Amy West	Т	564	0.29	0	А			648	0.33	0	Α			648	0.35	0	Α		
Ainy west	R	7	0.29	4.6	А			8	0.33	4.6	Α			31	0.35	4.6	Α		
Amy / Smith	Turn			Exis					-		ture						w/ Dev		
,,		Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
Smith	L	3	0.008	8.1	А			3	0.01	9.3	A			16	0.08	9.5	A		
	R	1	0.008	15.3	B			1	0.01	20.7	В			11	0.08	22	B		
Amy East	L	2 754	0.388	4.6	A	0.1	А	2	0.45	4.6	A	0.2	Α	21	0.45	4.6	A	0.4	А
	Т	500	0.388	0.1	A	-		866 75	0.45	0.1	A			866 575	0.45	0.1	A		
Amy West	R	13	0.263	4.6	A			15	0.3	4.6	A			15	0.3	4.6	A		
		15	0.203	4.0 Exis				15	0.3		ture			15	0.3		w/ Dev		
Amy / Nottinghill	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
	L	2	0.014	10.1	A			2	0.017	12.2	A			2	0.017	12.5	A		
Nottinghill South	Т	3	0.014	9.9	А			3	0.017	11.9	Α			3	0.017	12.3	А		
	R	2	0.014	12.8	А			2	0.017	14.9	В			2	0.017	15.2	В		
	L	6	0.612	4.8	А			7	0.715	5.2	А			7	0.715	5.2	А		
Amy East	Т	681	0.612	4.6	А			744	0.715	5	Α			756	0.715	5	Α		
	R	121	0.612	7.5	А	5.3	А	139	0.715	7.9	А	5.7	А	139	0.715	7.9	А	5.7	А
	L	73	0.197	7.2	А	5.5		83	0.246	7.9	А	5.7		83	0.246	8	А	5.7	
Nottinghill North	Т	5	0.197	6.9	A			6	0.246	7.6	A			6	0.246	7.7	A		
	R	80	0.197	9.8	A			92	0.246	10.6	A			92	0.246	10.6	A		
Amy West	L	59	0.45	4.9	A	-		67	0.534	5.2	A			67	0.534	5.2	A		
Ally West	T R	489 5	0.45	4.7 7.6	A			535 6	0.534 0.534	5 7.9	A			538 6	0.534 0.534	5 7.9	A		
Amy / Joseph /		5	0.43	7.0 Exis				0	0.334		ture			0	0.334	Future			
Weeroona	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
	L	468	200	56.2	E	ring. Delay	205	539	1.06	85	F	rug. Deluy	205	545	1.03	115.2	F	rivg. Delay	205
Joseph South	Т	1554		48.8	D			1786	1.03	78.1	F			1786	1.03	106.5	F		
	R	95		84.9	F			109	1.13	116.5	F			109	1.13	200	F		
	L	218		29.1	С			251	0.49	57.4	E			251	0.49	56.5	E		
Weeroona	Т	135		32.8	С			155	0.47	64.9	E			158	0.47	63.2	E		
L	R	1		37.1	С	53.8	D	1	0.47	69.2	E	98.6	F	1	0.47	67.5	E	115.8	F
1	L	154	l	61.6	E			177	1.15	123.6	F			177	1.15	139.6	F		
Joseph North	T	2484	ļ	54.6	D			2857	1.15	119	E.			2857	1.15	134.8	E .		
	R	213		78 34	-			244 188	1.09	146.9 40.9	-			249 192	1.09	135.7			
A my St	L	164			C C				0.37		C C				0.37	38.4	C C		
Amy St	R	62 299		29.5 81.5				72 344	0.37	36.4 93.4	C E			73 349	0.37	33.8 81.6	C		
		255		Exis	ting			344	1.04		ture			343	1.04		w/ Dev		
Carlingford / Park	Turn	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
Contract in	Т	399	0.6	6.8	A			459	0.76	8.8	A			459	0.76	8.9	A		
Carlingford	R	338	0.6	9.4	A			389	0.76	11.8	A			391	0.76	11.9	A		
Auburn Road	L	362	0.56	10.8	A			416	0.78	21.7	В	12.1		418	0.8	22.1	В	12.2	
Auburn Koad	R	290	0.49	11.7	А	8.8	А	334	0.7	19.1	В	13.1	A	336	0.7	19.3	В	13.2	A
Park Road	L	484	0.5	8.5	А			557	0.62	10.6	А			562	0.63	10.7	А		
i ark Nodu	Т	714	0.62	7.8	A			821	0.76	10.9	A			821	0.76	11	A		
Auburn / Amy	Turn			Exis	-						ture					Future			
, abanny , any		Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS	Volume	DoS	Avg. Delay		Avg. Delay	LoS	Volume	DoS	Avg. Delay	LoS	Avg. Delay	LoS
Auburn Rd	L	222	0.27	7.9	A			255	0.48	9.1	A			255	0.49	9.4	A		
	T	268	0.28	6.1	A			30	0.35	6.7	A			322	0.36	6.8	A		
Amy St	T	438	0.55	8	A	7.6	А	504	0.67	10.9	A	10.0	А	511	0.69	11.1	A	9.8	А
	R	428 388	0.43	10.8	A			492 446	0.78	16.6 5.6	B			496 454	0.78	17.2	B		
Auburn Rd W	R	388 440		5.3 6.7	A .			506	0.46	7.1	A					5.7 7.2	A		
1	Л	440	0.42	0.7	А			500	0.49	/.1	A			506	0.51	1.4	А		

4.3.2 Analysis

The modelling demonstrates that:

- All intersections (with the exception of Amy Street / Joseph Street / Weeroona Road in the AM peak hour) currently operate at acceptable levels of service
- The projected levels of background traffic growth over a 10 year period will result in the Amy Street / Joseph Street / Weeroona Road intersection and Carlingford Road / Park road intersection operate at Level of Service F.
- The additional traffic resulting from the proposed development (a total of 33 vehicles in peak hours) does not result in any significant changes to the operations of the intersections assessed. The projected level of service at all intersections remains unchanged from the 'future base' scenario.

In the above context, the impacts from the proposed development are considered acceptable.

4.4 Parking and loading provisions

All on-site car parking and loading facilities (including bicycle parking) will be provided in accordance with the current Council development control plan (DCP). The design of these areas will comply with Australian Standards for Off-Street Car Parking AS2890.1

4.5 Walking and cycling access

There are no proposed changes to the current external walking and cycling network. The current network is deemed both adequate and appropriate for the proposed site development.

5 Conclusions

This report has investigated the potential traffic and transport impacts of the proposed residential development at 2-4 Smith Street, 116-132 Amy Street and 1-9 Maunder Street in Regents Park. Key findings of the study are as follows:

- The proposal involves re-zoning the site from R2 low density residential to R3 medium density residential
- The site is well served by public transport with the Regents Park Rail Station located within ten minutes' walk and several bus stops located along Amy Street.
- Pedestrian and cycling connectivity on the area in generally of a good standard. The current network is deemed adequate, therefore no changes are proposed.
- Driveway access to the proposed development is to be provided off Maunder Street and Smith Street.
- All on-site parking and loading facilities are to be provided and designed as per Council Development Control Plan (DCP) and Australian Standards for off-street car parking AS2890.1, respectively.
- The proposed development which will comprise of approximately 75 townhouses, with a net traffic generation of 33 vehicle trips in the commuter peak hours.
- Traffic modelling indicates all intersections (with the exception of Amy Street / Joseph Street / Weeroona Road in the AM peak hour) currently operate at acceptable levels of service
- The additional traffic resulting from the proposed development does not result in any significant changes to the operations of the intersections assessed. The projected level of service at all intersections remains unchanged from the 'future base' scenario. In this context, the impacts from the proposed development are considered acceptable.

Appendix A

Sidra Output Tables

Site: 101 [Amy St / Kingsland Rd AM Existing]

Amy St / Kingsland Rd Roundabout

Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
Couthr		veh/h	%	v/c	sec		veh	m		per veh	km/h		
	Kingsland												
1	L2	13	0.0	0.103	8.7	LOS A	0.6	4.2	0.72	0.76	43.5		
2	T1	25	0.0	0.103	8.4	LOS A	0.6	4.2	0.72	0.76	44.1		
3	R2	29	0.0	0.103	11.4	LOS A	0.6	4.2	0.72	0.76	43.9		
Approa	ach	67	0.0	0.103	9.8	LOS A	0.6	4.2	0.72	0.76	43.9		
East: A	my St Eas	t											
4	L2	3	0.0	0.492	5.6	LOS A	4.0	28.0	0.58	0.60	45.1		
5	T1	443	0.0	0.492	5.3	LOS A	4.0	28.0	0.58	0.60	45.7		
6	R2	93	0.0	0.492	8.2	LOS A	4.0	28.0	0.58	0.60	45.5		
Approa	ach	539	0.0	0.492	5.8	LOS A	4.0	28.0	0.58	0.60	45.7		
North:	Kingsland	Rd North											
7	L2	81	0.0	0.367	8.4	LOS A	2.4	16.7	0.76	0.84	43.3		
8	T1	9	0.0	0.367	8.2	LOS A	2.4	16.7	0.76	0.84	43.9		
9	R2	175	0.0	0.367	11.1	LOS A	2.4	16.7	0.76	0.84	43.7		
Approa	ach	265	0.0	0.367	10.2	LOS A	2.4	16.7	0.76	0.84	43.6		
West: /	Amy St We	st											
10	L2	140	0.0	0.580	5.3	LOS A	5.2	36.2	0.54	0.55	45.4		
11	T1	550	0.0	0.580	5.1	LOS A	5.2	36.2	0.54	0.55	46.0		
12	R2	11	0.0	0.580	8.0	LOS A	5.2	36.2	0.54	0.55	45.8		
Approa	ach	701	0.0	0.580	5.2	LOS A	5.2	36.2	0.54	0.55	45.9		
All Veh	nicles	1572	0.0	0.580	6.4	LOS A	5.2	36.2	0.60	0.62	45.3		

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:35 PM

Site: 101 [Amy St / Kingsland Rd AM Future]

Amy St / Kingsland Rd Roundabout

		ormance - \									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate	Speed
South	Kingsland		70	V/C	sec		ven	m	_	per veh	km/ł
1	L2	15	0.0	0.137	9.9	LOS A	0.8	5.8	0.79	0.82	42.9
2	T1	29	0.0	0.137	9.7	LOS A	0.8	5.8	0.79	0.82	43.
3	R2	33	0.0	0.137	12.6	LOS A	0.8	5.8	0.79	0.82	43.3
Approa	ach	77	0.0	0.137	11.0	LOS A	0.8	5.8	0.79	0.82	43.3
East: A	Amy St Eas	t									
4	L2	3	0.0	0.584	6.0	LOS A	5.3	37.0	0.69	0.65	44.8
5	T1	509	0.0	0.584	5.7	LOS A	5.3	37.0	0.69	0.65	45.
6	R2	107	0.0	0.584	8.7	LOS A	5.3	37.0	0.69	0.65	45.2
Approa	ach	619	0.0	0.584	6.2	LOS A	5.3	37.0	0.69	0.65	45.4
North:	Kingsland	Rd North									
7	L2	93	0.0	0.474	10.7	LOS A	3.7	25.9	0.86	0.97	42.2
8	T1	10	0.0	0.474	10.5	LOS A	3.7	25.9	0.86	0.97	42.7
9	R2	201	0.0	0.474	13.4	LOS A	3.7	25.9	0.86	0.97	42.5
Appro	ach	304	0.0	0.474	12.5	LOS A	3.7	25.9	0.86	0.97	42.4
West:	Amy St We	st									
10	L2	161	0.0	0.682	5.8	LOS A	7.1	49.5	0.67	0.60	45.1
11	T1	633	0.0	0.682	5.6	LOS A	7.1	49.5	0.67	0.60	45.7
12	R2	11	0.0	0.682	8.5	LOS A	7.1	49.5	0.67	0.60	45.5
Approa	ach	805	0.0	0.682	5.6	LOS A	7.1	49.5	0.67	0.60	45.6
All Veł	nicles	1805	0.0	0.682	7.2	LOS A	7.1	49.5	0.71	0.69	44.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:36 PM

Site: 101 [Amy St / Kingsland Rd AM Future wDev]

Amy St / Kingsland Rd Roundabout

Move														
Mov														
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
Couth	Kingolond	veh/h	%	v/c	Sec		veh	m		per veh	km/h			
	: Kingsland			0.4.44	10.0	100.4		<u> </u>	0.04	0.00	40.7			
1	L2	15	0.0	0.141	10.2	LOS A	0.9	6.1	0.81	0.83	42.7			
2	T1	29	0.0	0.141	10.0	LOS A	0.9	6.1	0.81	0.83	43.3			
3	R2	33	0.0	0.141	12.9	LOS A	0.9	6.1	0.81	0.83	43.1			
Appro	ach	77	0.0	0.141	11.3	LOS A	0.9	6.1	0.81	0.83	43.1			
East: /	Amy St Eas	it												
4	L2	3	0.0	0.604	6.0	LOS A	5.6	39.4	0.70	0.65	44.8			
5	T1	532	0.0	0.604	5.8	LOS A	5.6	39.4	0.70	0.65	45.4			
6	R2	107	0.0	0.604	8.7	LOS A	5.6	39.4	0.70	0.65	45.2			
Appro	ach	642	0.0	0.604	6.3	LOS A	5.6	39.4	0.70	0.65	45.4			
North:	Kingsland	Rd North												
7	L2	93	0.0	0.483	11.0	LOS A	3.8	26.8	0.88	0.98	42.0			
8	T1	10	0.0	0.483	10.8	LOS A	3.8	26.8	0.88	0.98	42.6			
9	R2	201	0.0	0.483	13.7	LOS A	3.8	26.8	0.88	0.98	42.4			
Appro	ach	304	0.0	0.483	12.8	LOS A	3.8	26.8	0.88	0.98	42.3			
West:	Amy St We	st												
10	L2	161	0.0	0.693	5.8	LOS A	7.3	51.3	0.68	0.60	45.0			
11	T1	646	0.0	0.693	5.6	LOS A	7.3	51.3	0.68	0.60	45.7			
12	R2	11	0.0	0.693	8.5	LOS A	7.3	51.3	0.68	0.60	45.4			
Appro	ach	818	0.0	0.693	5.7	LOS A	7.3	51.3	0.68	0.60	45.5			
All Vel	hicles	1841	0.0	0.693	7.3	LOS A	7.3	51.3	0.73	0.69	44.8			

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:37 PM

Site: 101 [Amy St / Kingsland Rd PM Existing]

Amy St / Kingsland Rd Roundabout

Move														
Mov					Average			of Queue		Effective	Average			
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
Cauth		veh/h	%	V/C	sec		veh	m		per veh	km/h			
	Kingsland						~ 4							
1	L2	8	0.0	0.062	9.6	LOS A	0.4	2.6	0.78	0.76	43.2			
2	T1	15	0.0	0.062	9.3	LOS A	0.4	2.6	0.78	0.76	43.8			
3	R2	12	0.0	0.062	12.3	LOS A	0.4	2.6	0.78	0.76	43.6			
Approa	ach	35	0.0	0.062	10.4	LOS A	0.4	2.6	0.78	0.76	43.6			
East: A	Amy St Eas	it												
4	L2	23	0.0	0.621	6.0	LOS A	5.8	40.4	0.68	0.63	44.9			
5	T1	588	0.0	0.621	5.7	LOS A	5.8	40.4	0.68	0.63	45.5			
6	R2	72	0.0	0.621	8.7	LOS A	5.8	40.4	0.68	0.63	45.3			
Approa	ach	683	0.0	0.621	6.1	LOS A	5.8	40.4	0.68	0.63	45.5			
North:	Kingsland	Rd North												
7	L2	99	0.0	0.346	7.4	LOS A	2.2	15.1	0.68	0.78	44.0			
8	T1	33	0.0	0.346	7.2	LOS A	2.2	15.1	0.68	0.78	44.6			
9	R2	152	0.0	0.346	10.1	LOS A	2.2	15.1	0.68	0.78	44.4			
Approa	ach	284	0.0	0.346	8.8	LOS A	2.2	15.1	0.68	0.78	44.3			
West:	Amy St We	st												
10	L2	82	0.0	0.430	4.7	LOS A	3.3	23.3	0.38	0.49	45.8			
11	T1	441	0.0	0.430	4.5	LOS A	3.3	23.3	0.38	0.49	46.4			
12	R2	24	0.0	0.430	7.4	LOS A	3.3	23.3	0.38	0.49	46.2			
Approa	ach	547	0.0	0.430	4.6	LOS A	3.3	23.3	0.38	0.49	46.3			
All Veł	nicles	1549	0.0	0.621	6.2	LOS A	5.8	40.4	0.58	0.61	45.5			

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:38 PM

Site: 101 [Amy St / Kingsland Rd PM Future]

Amy St / Kingsland Rd Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
					Average			of Queue		Effective	Average			
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
Osuth	. Kanalan d	veh/h	%	v/c	Sec		veh	m		per veh	km/h			
	: Kingsland													
1	L2	9	0.0	0.088	11.3	LOS A	0.6	3.9	0.86	0.82	42.3			
2	T1	17	0.0	0.088	11.1	LOS A	0.6	3.9	0.86	0.82	42.9			
3	R2	14	0.0	0.088	14.0	LOS A	0.6	3.9	0.86	0.82	42.7			
Appro	ach	40	0.0	0.088	12.1	LOS A	0.6	3.9	0.86	0.82	42.7			
East:	Amy St Eas	st												
4	L2	26	0.0	0.736	8.1	LOS A	9.6	67.3	0.83	0.76	44.4			
5	T1	676	0.0	0.736	7.9	LOS A	9.6	67.3	0.83	0.76	45.0			
6	R2	83	0.0	0.736	10.8	LOS A	9.6	67.3	0.83	0.76	44.8			
Appro	ach	785	0.0	0.736	8.2	LOS A	9.6	67.3	0.83	0.76	44.9			
North:	Kingsland	Rd North												
7	L2	114	0.0	0.428	8.4	LOS A	2.9	20.5	0.76	0.84	43.5			
8	T1	38	0.0	0.428	8.2	LOS A	2.9	20.5	0.76	0.84	44.1			
9	R2	175	0.0	0.428	11.1	LOS A	2.9	20.5	0.76	0.84	43.9			
Appro	ach	327	0.0	0.428	9.8	LOS A	2.9	20.5	0.76	0.84	43.8			
West:	Amy St We	est												
10	L2	94	0.0	0.501	4.9	LOS A	4.3	30.2	0.46	0.51	45.6			
11	T1	507	0.0	0.501	4.7	LOS A	4.3	30.2	0.46	0.51	46.2			
12	R2	24	0.0	0.501	7.6	LOS A	4.3	30.2	0.46	0.51	46.0			
Appro	ach	625	0.0	0.501	4.8	LOS A	4.3	30.2	0.46	0.51	46.1			
All Ve	hicles	1777	0.0	0.736	7.4	LOS A	9.6	67.3	0.69	0.69	45.1			

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:39 PM

Site: 101 [Amy St / Kingsland Rd PM Future wDev]

Amy St / Kingsland Rd Roundabout

Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
					Average			of Queue			Average		
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
Cauth		veh/h	%	v/c	sec		veh	m		per veh	km/h		
	Kingsland										40.0		
1	L2	9	0.0	0.090	11.5	LOS A	0.6	4.1	0.87	0.83	42.2		
2	T1	17	0.0	0.090	11.2	LOS A	0.6	4.1	0.87	0.83	42.8		
3	R2	14	0.0	0.090	14.2	LOS A	0.6	4.1	0.87	0.83	42.6		
Appro	ach	40	0.0	0.090	12.3	LOS A	0.6	4.1	0.87	0.83	42.6		
East: A	Amy St Eas	t											
4	L2	26	0.0	0.748	8.3	LOS A	10.1	70.7	0.85	0.77	44.2		
5	T1	688	0.0	0.748	8.1	LOS A	10.1	70.7	0.85	0.77	44.9		
6	R2	83	0.0	0.748	11.0	LOS A	10.1	70.7	0.85	0.77	44.6		
Appro	ach	797	0.0	0.748	8.4	LOS A	10.1	70.7	0.85	0.77	44.8		
North:	Kingsland	Rd North											
7	L2	114	0.0	0.437	8.8	LOS A	3.1	21.4	0.78	0.86	43.3		
8	T1	38	0.0	0.437	8.5	LOS A	3.1	21.4	0.78	0.86	43.9		
9	R2	175	0.0	0.437	11.5	LOS A	3.1	21.4	0.78	0.86	43.7		
Appro	ach	327	0.0	0.437	10.2	LOS A	3.1	21.4	0.78	0.86	43.6		
West:	Amy St We	st											
10	L2	94	0.0	0.517	4.9	LOS A	4.6	32.0	0.47	0.51	45.5		
11	T1	528	0.0	0.517	4.7	LOS A	4.6	32.0	0.47	0.51	46.2		
12	R2	24	0.0	0.517	7.6	LOS A	4.6	32.0	0.47	0.51	46.0		
Appro	ach	646	0.0	0.517	4.8	LOS A	4.6	32.0	0.47	0.51	46.1		
All Vel	nicles	1810	0.0	0.748	7.5	LOS A	10.1	70.7	0.70	0.69	45.0		

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:40 PM

V Site: 101 [Amy St / Maunder St AM Existing]

Amy St / Maunder St Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	<i>'ehicles</i>								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Maunder S	t									
1	L2	13	0.0	0.043	6.6	LOS A	0.1	0.9	0.60	0.74	43.5
3	R2	8	0.0	0.043	15.4	LOS B	0.1	0.9	0.60	0.74	43.2
Approa	ach	21	0.0	0.043	10.1	LOS A	0.1	0.9	0.60	0.74	43.4
East: A	my St East										
4	L2	2	0.0	0.275	4.6	LOS A	0.0	0.0	0.00	0.00	49.5
5	T1	535	0.0	0.275	0.0	LOS A	0.0	0.0	0.00	0.00	49.9
Approa	ach	537	0.0	0.275	0.0	NA	0.0	0.0	0.00	0.00	49.9
West:	Amy St Wes	st									
11	T1	711	0.0	0.371	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
12	R2	13	0.0	0.371	4.6	LOS A	0.0	0.0	0.00	0.01	48.9
Approa	ach	723	0.0	0.371	0.1	NA	0.0	0.0	0.00	0.01	49.9
All Veh	icles	1281	0.0	0.371	0.3	NA	0.1	0.9	0.01	0.02	49.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:41 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Maunder St AM Future]

Amy St / Maunder St Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Maunder S	t									
1	L2	15	0.0	0.065	7.1	LOS A	0.2	1.4	0.69	0.80	42.3
3	R2	9	0.0	0.065	20.8	LOS B	0.2	1.4	0.69	0.80	42.0
Approa	ach	24	0.0	0.065	12.5	LOS A	0.2	1.4	0.69	0.80	42.2
East: A	my St East										
4	L2	2	0.0	0.316	4.6	LOS A	0.0	0.0	0.00	0.00	49.5
5	T1	615	0.0	0.316	0.0	LOS A	0.0	0.0	0.00	0.00	49.9
Approa	ach	617	0.0	0.316	0.1	NA	0.0	0.0	0.00	0.00	49.9
West: /	Amy St Wes	st									
11	T1	817	0.0	0.427	0.1	LOS A	0.0	0.0	0.00	0.01	49.9
12	R2	15	0.0	0.427	4.6	LOS A	0.0	0.0	0.00	0.01	48.9
Approa	ach	832	0.0	0.427	0.1	NA	0.0	0.0	0.00	0.01	49.8
All Veh	icles	1473	0.0	0.427	0.3	NA	0.2	1.4	0.01	0.02	49.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:42 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

Site: 101 [Amy St / Maunder St AM Future wDev]

Amy St / Maunder St Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Maunder S	it									
1	L2	15	0.0	0.069	7.3	LOS A	0.2	1.4	0.71	0.82	42.0
3	R2	9	0.0	0.069	22.1	LOS B	0.2	1.4	0.71	0.82	41.7
Approa	ach	24	0.0	0.069	13.1	LOS A	0.2	1.4	0.71	0.82	41.9
East: A	my St East										
4	L2	2	0.0	0.329	4.6	LOS A	0.0	0.0	0.00	0.00	49.5
5	T1	639	0.0	0.329	0.0	LOS A	0.0	0.0	0.00	0.00	49.9
Approa	ach	641	0.0	0.329	0.1	NA	0.0	0.0	0.00	0.00	49.9
West:	Amy St Wes	st									
11	T1	817	0.0	0.434	0.1	LOS A	0.0	0.0	0.00	0.02	49.8
12	R2	28	0.0	0.434	4.6	LOS A	0.0	0.0	0.00	0.02	48.8
Approa	ach	845	0.0	0.434	0.2	NA	0.0	0.0	0.00	0.02	49.8
All Veh	icles	1511	0.0	0.434	0.4	NA	0.2	1.4	0.01	0.02	49.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:42 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Maunder St PM Existing]

Amy St / Maunder St Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Maunder S										
1	L2	8	0.0	0.048	8.0	LOS A	0.1	1.0	0.72	0.84	42.3
3	R2	9	0.0	0.048	16.5	LOS B	0.1	1.0	0.72	0.84	42.0
Approa	ach	18	0.0	0.048	12.5	LOS A	0.1	1.0	0.72	0.84	42.1
East: A	my St East										
4	L2	11	0.0	0.382	4.6	LOS A	0.0	0.0	0.00	0.01	49.4
5	T1	734	0.0	0.382	0.1	LOS A	0.0	0.0	0.00	0.01	49.9
Approa	ach	744	0.0	0.382	0.1	NA	0.0	0.0	0.00	0.01	49.9
West:	Amy St Wes	st									
11	T1	564	0.0	0.293	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
12	R2	7	0.0	0.293	4.6	LOS A	0.0	0.0	0.00	0.01	48.9
Approa	ach	572	0.0	0.293	0.1	NA	0.0	0.0	0.00	0.01	49.9
All Veh	icles	1334	0.0	0.382	0.3	NA	0.1	1.0	0.01	0.02	49.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:43 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Maunder St PM Future]

Amy St / Maunder St Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Maunder S	it									
1	L2	9	0.0	0.075	9.2	LOS A	0.2	1.5	0.80	0.91	40.5
3	R2	11	0.0	0.075	22.7	LOS B	0.2	1.5	0.80	0.91	40.2
Approa	ach	20	0.0	0.075	16.3	LOS B	0.2	1.5	0.80	0.91	40.4
East: A	my St East										
4	L2	13	0.0	0.440	4.6	LOS A	0.0	0.0	0.00	0.01	49.4
5	T1	844	0.0	0.440	0.1	LOS A	0.0	0.0	0.00	0.01	49.9
Approa	ach	857	0.0	0.440	0.1	NA	0.0	0.0	0.00	0.01	49.9
West:	Amy St Wes	st									
11	T1	648	0.0	0.337	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
12	R2	8	0.0	0.337	4.6	LOS A	0.0	0.0	0.00	0.01	48.9
Approa	ach	657	0.0	0.337	0.1	NA	0.0	0.0	0.00	0.01	49.9
All Veh	nicles	1534	0.0	0.440	0.3	NA	0.2	1.5	0.01	0.02	49.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:44 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

Site: 101 [Amy St / Maunder St PM Future wDev]

Amy St / Maunder St Giveway / Yield (Two-Way)

Move	ment Perf	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Maunder S	St									
1	L2	9	0.0	0.079	9.3	LOS A	0.2	1.6	0.81	0.91	40.2
3	R2	11	0.0	0.079	24.0	LOS B	0.2	1.6	0.81	0.91	39.9
Approa	ach	20	0.0	0.079	17.1	LOS B	0.2	1.6	0.81	0.91	40.0
East: A	Amy St East	t									
4	L2	13	0.0	0.446	4.6	LOS A	0.0	0.0	0.00	0.01	49.4
5	T1	856	0.0	0.446	0.1	LOS A	0.0	0.0	0.00	0.01	49.9
Approa	ach	868	0.0	0.446	0.1	NA	0.0	0.0	0.00	0.01	49.9
West:	Amy St Wes	st									
11	T1	648	0.0	0.349	0.0	LOS A	0.0	0.0	0.00	0.03	49.8
12	R2	31	0.0	0.349	4.6	LOS A	0.0	0.0	0.00	0.03	48.8
Approa	ach	679	0.0	0.349	0.2	NA	0.0	0.0	0.00	0.03	49.8
All Ver	nicles	1567	0.0	0.446	0.4	NA	0.2	1.6	0.01	0.03	49.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:44 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

Site: 101 [Amy St / Nottinghill Rd AM Existing]

Amy St / Nottinghill Rd Roundabout

Move	ment P <u>er</u> t	formance - V	/ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back (Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Onuth	N I a ttia aib ill	veh/h	%	v/c	Sec		veh	m		per veh	km/h
	Nottinghill										
1	L2	1	0.0	0.032	7.5	LOS A	0.2	1.2	0.62	0.65	44.4
2	T1	16	0.0	0.032	7.2	LOS A	0.2	1.2	0.62	0.65	45.0
3	R2	7	0.0	0.032	10.1	LOS A	0.2	1.2	0.62	0.65	44.8
Approach		24	0.0	0.032	8.1	LOS A	0.2	1.2	0.62	0.65	44.9
East: A	Amy St Eas	st									
4	L2	4	0.0	0.401	4.4	LOS A	3.3	22.9	0.30	0.47	45.8
5	T1	461	0.0	0.401	4.1	LOS A	3.3	22.9	0.30	0.47	46.5
6	R2	82	0.0	0.401	7.1	LOS A	3.3	22.9	0.30	0.47	46.3
Appro	ach	547	0.0	0.401	4.6	LOS A	3.3	22.9	0.30	0.47	46.5
North:	Nottinghill	Rd North									
7	L2	123	0.0	0.253	8.3	LOS A	1.5	10.8	0.72	0.80	43.8
8	T1	1	0.0	0.253	8.0	LOS A	1.5	10.8	0.72	0.80	44.4
9	R2	57	0.0	0.253	11.0	LOS A	1.5	10.8	0.72	0.80	44.2
Appro	ach	181	0.0	0.253	9.1	LOS A	1.5	10.8	0.72	0.80	44.0
West:	Amy St We	est									
10	L2	161	0.0	0.591	5.0	LOS A	5.4	37.9	0.46	0.50	45.6
11	T1	605	0.0	0.591	4.7	LOS A	5.4	37.9	0.46	0.50	46.3
12	R2	1	0.0	0.591	7.6	LOS A	5.4	37.9	0.46	0.50	46.0
Appro	ach	767	0.0	0.591	4.8	LOS A	5.4	37.9	0.46	0.50	46.1
All Vel	nicles	1520	0.0	0.591	5.3	LOS A	5.4	37.9	0.43	0.52	46.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:49 PM

Site: 101 [Amy St / Nottinghill Rd AM Future]

Amy St / Nottinghill Rd Roundabout

Move	ment P <u>er</u> t	formance - V	/ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Cauth	Nottinghill	veh/h	%	v/c	sec		veh	m		per veh	km/r
	Nottinghill										
1	L2	1	0.0	0.040	8.3	LOS A	0.2	1.5	0.67	0.68	44.0
2	T1	18	0.0	0.040	8.0	LOS A	0.2	1.5	0.67	0.68	44.6
3	R2	8	0.0	0.040	10.9	LOS A	0.2	1.5	0.67	0.68	44.4
Approach		27	0.0	0.040	8.9	LOS A	0.2	1.5	0.67	0.68	44.5
East: A	Amy St Eas	st									
4	L2	5	0.0	0.467	4.5	LOS A	4.2	29.5	0.35	0.47	45.7
5	T1	531	0.0	0.467	4.2	LOS A	4.2	29.5	0.35	0.47	46.4
6	R2	95	0.0	0.467	7.2	LOS A	4.2	29.5	0.35	0.47	46.1
Approa	ach	631	0.0	0.467	4.7	LOS A	4.2	29.5	0.35	0.47	46.3
North:	Nottinghill	Rd North									
7	L2	142	0.0	0.330	9.4	LOS A	2.2	15.1	0.81	0.87	43.3
8	T1	1	0.0	0.330	9.1	LOS A	2.2	15.1	0.81	0.87	43.9
9	R2	65	0.0	0.330	12.0	LOS A	2.2	15.1	0.81	0.87	43.7
Appro	ach	208	0.0	0.330	10.2	LOS A	2.2	15.1	0.81	0.87	43.4
West:	Amy St We	est									
10	L2	185	0.0	0.690	5.3	LOS A	7.5	52.5	0.58	0.53	45.3
11	T1	696	0.0	0.690	5.1	LOS A	7.5	52.5	0.58	0.53	45.9
12	R2	1	0.0	0.690	8.0	LOS A	7.5	52.5	0.58	0.53	45.7
Appro	ach	882	0.0	0.690	5.2	LOS A	7.5	52.5	0.58	0.53	45.8
All Vel	nicles	1748	0.0	0.690	5.6	LOS A	7.5	52.5	0.53	0.55	45.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:50 PM

Site: 101 [Amy St / Nottinghill Rd AM Future wDev]

Amy St / Nottinghill Rd Roundabout

Move	ment Perf	ormance - \	/ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Nottinghill	veh/h	%	V/C	Sec		veh	m		per veh	km/l
	: Nottinghill										
1	L2	1	0.0	0.041	8.4	LOS A	0.2	1.6	0.68	0.69	43.9
2	T1	18	0.0	0.041	8.1	LOS A	0.2	1.6	0.68	0.69	44.5
3	R2	8	0.0	0.041	11.0	LOS A	0.2	1.6	0.68	0.69	44.3
Approach		27	0.0	0.041	9.0	LOS A	0.2	1.6	0.68	0.69	44.4
East: /	Amy St Eas	t									
4	L2	5	0.0	0.474	4.5	LOS A	4.3	30.4	0.36	0.47	45.
5	T1	541	0.0	0.474	4.2	LOS A	4.3	30.4	0.36	0.47	46.3
6	R2	95	0.0	0.474	7.2	LOS A	4.3	30.4	0.36	0.47	46.
Appro	ach	641	0.0	0.474	4.7	LOS A	4.3	30.4	0.36	0.47	46.
North:	Nottinghill	Rd North									
7	L2	142	0.0	0.340	9.6	LOS A	2.2	15.7	0.83	0.88	43.2
8	T1	1	0.0	0.340	9.4	LOS A	2.2	15.7	0.83	0.88	43.7
9	R2	65	0.0	0.340	12.3	LOS A	2.2	15.7	0.83	0.88	43.5
Appro	ach	208	0.0	0.340	10.4	LOS A	2.2	15.7	0.83	0.88	43.3
West:	Amy St We	st									
10	L2	185	0.0	0.705	5.4	LOS A	7.9	55.3	0.60	0.53	45.3
11	T1	716	0.0	0.705	5.1	LOS A	7.9	55.3	0.60	0.53	45.9
12	R2	1	0.0	0.705	8.1	LOS A	7.9	55.3	0.60	0.53	45.7
Appro	ach	902	0.0	0.705	5.2	LOS A	7.9	55.3	0.60	0.53	45.8
All Vel	hicles	1779	0.0	0.705	5.7	LOS A	7.9	55.3	0.54	0.55	45.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:51 PM
Site: 101 [Amy St / Nottinghill Rd PM Existing]

Amy St / Nottinghill Rd Roundabout

Mover	ment P <u>erf</u>	ormance - V	/ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Couthr	Mattinghill	veh/h	%	v/c	sec		veh	m		per veh	km/r
	Nottinghill										
1	L2	2	0.0	0.014	10.1	LOS A	0.1	0.6	0.78	0.67	43.0
2	T1	3	0.0	0.014	9.9	LOS A	0.1	0.6	0.78	0.67	43.6
3	R2	2	0.0	0.014	12.8	LOS A	0.1	0.6	0.78	0.67	43.4
Approa	ach	7	0.0	0.014	10.8	LOS A	0.1	0.6	0.78	0.67	43.3
East: A	my St Eas	t									
4	L2	6	0.0	0.612	4.8	LOS A	6.4	45.1	0.48	0.50	45.4
5	T1	681	0.0	0.612	4.6	LOS A	6.4	45.1	0.48	0.50	46.0
6	R2	121	0.0	0.612	7.5	LOS A	6.4	45.1	0.48	0.50	45.8
Approa	ach	808	0.0 0.612 7.5 LOS A 6.4 45.1 0.48 0.50		46.0						
North:	Nottinghill	Rd North									
7	L2	73	0.0	0.197	7.2	LOS A	1.1	8.0	0.64	0.74	44.2
8	T1	5	0.0	0.197	6.9	LOS A	1.1	8.0	0.64	0.74	44.8
9	R2	80	0.0	0.197	9.8	LOS A	1.1	8.0	0.64	0.74	44.6
Approa	ach	158	0.0	0.197	8.5	LOS A	1.1	8.0	0.64	0.74	44.4
West: A	Amy St We	st									
10	L2	59	0.0	0.454	4.9	LOS A	3.5	24.6	0.44	0.51	45.6
11	T1	489	0.0	0.454	4.7	LOS A	3.5	24.6	0.44	0.51	46.3
12	R2	5	0.0	0.454	7.6	LOS A	3.5	24.6	0.44	0.51	46.1
Approa	ach	554	0.0	0.454	4.8	LOS A	3.5	24.6	0.44	0.51	46.2
All Veh	icles	1527	0.0	0.612	5.3	LOS A	6.4	45.1	0.48	0.53	45.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:52 PM

Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

Site: 101 [Amy St / Nottinghill Rd PM Future]

Amy St / Nottinghill Rd Roundabout

		ormance - \									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Nottinghill	veh/h	%	V/C	sec	_	veh	m	_	per veh	km/l
1	L2	2	0.0	0.017	12.2	LOS A	0.1	0.8	0.86	0.71	42.0
2	T1	3	0.0	0.017	11.9	LOSA	0.1	0.0	0.86	0.71	42.
2	R2	2	0.0	0.017	14.9	LOS A	0.1	0.8	0.86	0.71	42.
-											
Appro	acn	7	0.0	0.017	12.8	LOS A	0.1	0.8	0.86	0.71	42.3
East: /	Amy St Eas	t									
4	L2	7	0.0	0.715	5.2	LOS A	9.1	63.7	0.62	0.53	45.
5	T1	783	0.0	0.715	5.0	LOS A	9.1	63.7	0.62	0.53	45.
6	R2	139	0.0	0.715	7.9	LOS A	9.1	63.7	0.62	0.53	45.
Appro	ach	929	0.0	0.715	5.4	LOS A	9.1	63.7	0.62	0.53	45.
North:	Nottinghill	Rd North									
7	L2	83	0.0	0.246	7.9	LOS A	1.5	10.5	0.71	0.79	43.
8	T1	6	0.0	0.246	7.6	LOS A	1.5	10.5	0.71	0.79	44.4
9	R2	92	0.0	0.246	10.6	LOS A	1.5	10.5	0.71	0.79	44.2
Appro	ach	181	0.0	0.246	9.2	LOS A	1.5	10.5	0.71	0.79	44.0
West:	Amy St We	st									
10	L2	67	0.0	0.534	5.2	LOS A	4.7	32.7	0.53	0.54	45.4
11	T1	563	0.0	0.534	5.0	LOS A	4.7	32.7	0.53	0.54	46.
12	R2	6	0.0	0.534	7.9	LOS A	4.7	32.7	0.53	0.54	45.8
Appro	ach	637	0.0	0.534	5.0	LOS A	4.7	32.7	0.53	0.54	46.0
All Vel	hicles	1755	0.0	0.715	5.7	LOS A	9.1	63.7	0.60	0.56	45.

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:53 PM

Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

Site: 101 [Amy St / Nottinghill Rd PM Future wDev]

Amy St / Nottinghill Rd Roundabout

Move	ment Per	formance - V	/ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back of		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Nottinghill	veh/h	%	V/C	sec	_	veh	m		per veh	km/h
			0.0	0.040	40.5	LOS A	0.4	0.0	0.07	0.70	44.0
1	L2	2	0.0	0.018	12.5		0.1	0.8	0.87	0.72	41.8
2	T1	3	0.0	0.018	12.3	LOS A	0.1	0.8	0.87	0.72	42.4
3	R2	2	0.0	0.018	15.2	LOS B	0.1	0.8	0.87	0.72	42.2
Appro	ach	7	0.0	0.018	13.2	LOS A	0.1	0.8	0.87	0.72	42.2
East: /	Amy St Eas	st									
4	L2	7	0.0	0.728	5.2	LOS A	9.5	66.8	0.64	0.53	45.0
5	T1	801	0.0	0.728	5.0	LOS A	9.5	66.8	0.64	0.53	45.6
6	R2	139	0.0	0.728	7.9	LOS A	9.5	66.8	0.64	0.53	45.4
Appro	ach	947	0.0	0.728	5.4	LOS A	9.5	66.8	0.64	0.53	45.6
North:	Nottinghill	Rd North									
7	L2	83	0.0	0.249	8.0	LOS A	1.5	10.7	0.71	0.80	43.8
8	T1	6	0.0	0.249	7.7	LOS A	1.5	10.7	0.71	0.80	44.4
9	R2	92	0.0	0.249	10.6	LOS A	1.5	10.7	0.71	0.80	44.1
Appro	ach	181	0.0	0.249	9.3	LOS A	1.5	10.7	0.71	0.80	44.0
West:	Amy St We	est									
10	L2	67	0.0	0.541	5.2	LOS A	4.8	33.6	0.53	0.54	45.4
11	T1	573	0.0	0.541	5.0	LOS A	4.8	33.6	0.53	0.54	46.0
12	R2	6	0.0	0.541	7.9	LOS A	4.8	33.6	0.53	0.54	45.8
Appro	ach	646	0.0	0.541	5.0	LOS A	4.8	33.6	0.53	0.54	46.0
All Vel	hicles	1782	0.0	0.728	5.7	LOS A	9.5	66.8	0.61	0.56	45.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:54 PM

Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101v [Amy St / Regent St AM Existing]

New Site Giveway / Yield (Two-Way)

Move	ment Perf	ormance - V	ehicles/								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: A	Amy St East	t									
5	T1	637	0.0	0.338	0.0	LOS A	0.0	0.0	0.00	0.02	49.8
6	R2	21	0.0	0.338	4.6	LOS A	0.0	0.0	0.00	0.02	48.9
Approa	ach	658	0.0	0.338	0.2	NA	0.0	0.0	0.00	0.02	49.8
North:	Regent St										
7	L2	67	0.0	0.531	14.8	LOS B	2.4	16.5	0.86	1.09	36.2
9	R2	65	0.0	0.531	39.6	LOS C	2.4	16.5	0.86	1.09	36.1
Approa	ach	132	0.0	0.531	27.0	LOS B	2.4	16.5	0.86	1.09	36.2
West:	Amy St Wes	st									
10	L2	202	0.0	0.370	4.6	LOS A	0.0	0.0	0.00	0.37	47.4
11	T1	653	0.0	0.370	0.0	LOS A	0.0	0.0	0.00	0.05	49.7
Approa	ach	855	0.0	0.370	1.1	NA	0.0	0.0	0.00	0.13	49.1
All Veh	nicles	1645	0.0	0.531	2.8	NA	2.4	16.5	0.07	0.16	48.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:31 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101v [Amy St / Regent St AM Future]

New Site Giveway / Yield (Two-Way)

Move	ment Perf	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: A	Amy St East	t									
5	T1	733	0.0	0.389	0.1	LOS A	0.0	0.0	0.00	0.02	49.8
6	R2	24	0.0	0.389	4.6	LOS A	0.0	0.0	0.00	0.02	48.9
Approa	ach	757	0.0	0.389	0.2	NA	0.0	0.0	0.00	0.02	49.8
North:	Regent St										
7	L2	77	0.0	0.930	87.3	LOS F	8.2	57.7	0.96	1.86	20.1
9	R2	75	0.0	0.930	128.7	LOS F	8.2	57.7	0.96	1.86	20.1
Approa	ach	152	0.0	0.930	107.7	LOS F	8.2	57.7	0.96	1.86	20.1
West:	Amy St Wes	st									
10	L2	232	0.0	0.425	4.6	LOS A	0.0	0.0	0.00	0.37	47.4
11	T1	751	0.0	0.425	0.1	LOS A	0.0	0.0	0.00	0.05	49.6
Approa	ach	983	0.0	0.425	1.1	NA	0.0	0.0	0.00	0.13	49.1
All Vel	nicles	1892	0.0	0.930	9.3	NA	8.2	57.7	0.08	0.22	44.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:32 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

Site: 101v [Amy St / Regent St AM Future wDev]

New Site Giveway / Yield (Two-Way)

Move	ment Perf	ormance - V	ehicles/								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: A	my St East	t									
5	T1	747	0.0	0.396	0.1	LOS A	0.0	0.0	0.00	0.02	49.8
6	R2	24	0.0	0.396	4.6	LOS A	0.0	0.0	0.00	0.02	48.9
Approa	ach	771	0.0	0.396	0.2	NA	0.0	0.0	0.00	0.02	49.8
North:	Regent St										
7	L2	77	0.0	0.961	109.7	LOS F	10.1	70.6	0.96	2.08	17.8
9	R2	75	0.0	0.961	152.8	LOS F	10.1	70.6	0.96	2.08	17.8
Approa	ach	152	0.0	0.961	131.0	LOS F	10.1	70.6	0.96	2.08	17.8
West:	Amy St We	st									
10	L2	232	0.0	0.427	4.6	LOS A	0.0	0.0	0.00	0.38	47.4
11	T1	755	0.0	0.427	0.1	LOS A	0.0	0.0	0.00	0.05	49.6
Approa	ach	987	0.0	0.427	1.1	NA	0.0	0.0	0.00	0.13	49.1
All Ver	nicles	1910	0.0	0.961	11.1	NA	10.1	70.6	0.08	0.24	43.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:12:04 AM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101v [Amy St / Regent St PM Existing]

New Site Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	ehicles/								·
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: F	RoadName										
5	T1	762	0.0	0.409	0.1	LOS A	0.0	0.0	0.00	0.02	49.8
6	R2	33	0.0	0.409	4.6	LOS A	0.0	0.0	0.00	0.02	48.8
Approa	ach	795	0.0	0.409	0.2	NA	0.0	0.0	0.00	0.02	49.8
North:	RoadName	•									
7	L2	75	0.0	0.444	11.2	LOS A	1.9	13.4	0.78	1.01	38.2
9	R2	53	0.0	0.444	37.1	LOS C	1.9	13.4	0.78	1.01	38.1
Approa	ach	128	0.0	0.444	21.9	LOS B	1.9	13.4	0.78	1.01	38.1
West:	RoadName										
10	L2	151	0.0	0.283	4.6	LOS A	0.0	0.0	0.00	0.38	47.4
11	T1	503	0.0	0.283	0.0	LOS A	0.0	0.0	0.00	0.05	49.7
Approa	ach	654	0.0	0.283	1.1	NA	0.0	0.0	0.00	0.12	49.1
All Veł	nicles	1577	0.0	0.444	2.3	NA	1.9	13.4	0.06	0.14	48.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:33 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101v [Amy St / Regent St PM Future]

New Site Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: I	RoadName										
5	T1	876	0.0	0.470	0.1	LOS A	0.0	0.0	0.00	0.02	49.8
6	R2	38	0.0	0.470	4.6	LOS A	0.0	0.0	0.00	0.02	48.8
Appro	ach	914	0.0	0.470	0.3	NA	0.0	0.0	0.00	0.02	49.7
North:	RoadName)									
7	L2	86	0.0	0.779	39.1	LOS C	4.7	32.6	0.89	1.39	27.9
9	R2	61	0.0	0.779	82.7	LOS F	4.7	32.6	0.89	1.39	27.8
Approa	ach	147	0.0	0.779	57.2	LOS E	4.7	32.6	0.89	1.39	27.9
West:	RoadName										
10	L2	174	0.0	0.325	4.6	LOS A	0.0	0.0	0.00	0.38	47.4
11	T1	578	0.0	0.325	0.0	LOS A	0.0	0.0	0.00	0.05	49.7
Approa	ach	752	0.0	0.325	1.1	NA	0.0	0.0	0.00	0.12	49.1
All Vel	nicles	1813	0.0	0.779	5.2	NA	4.7	32.6	0.07	0.18	46.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:34 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101v [Amy St / Regent St PM Future wDev]

New Site Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	ehicles/								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: F	RoadName										
5	T1	880	0.0	0.472	0.1	LOS A	0.0	0.0	0.00	0.02	49.8
6	R2	38	0.0	0.472	4.6	LOS A	0.0	0.0	0.00	0.02	48.8
Approa	ach	918	0.0	0.472	0.3	NA	0.0	0.0	0.00	0.02	49.7
North:	RoadName	•									
7	L2	86	0.0	0.809	45.6	LOS D	5.1	35.7	0.90	1.46	26.4
9	R2	61	0.0	0.809	90.9	LOS F	5.1	35.7	0.90	1.46	26.4
Approa	ach	147	0.0	0.809	64.4	LOS E	5.1	35.7	0.90	1.46	26.4
West:	RoadName										
10	L2	174	0.0	0.331	4.6	LOS A	0.0	0.0	0.00	0.39	47.3
11	T1	592	0.0	0.331	0.0	LOS A	0.0	0.0	0.00	0.04	49.7
Approa	ach	766	0.0	0.331	1.1	NA	0.0	0.0	0.00	0.12	49.1
All Veh	nicles	1831	0.0	0.809	5.7	NA	5.1	35.7	0.07	0.18	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:12:02 AM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Smith St AM Existing]

Amy St / Smith St Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	/ehicles								l
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	Smith St										
1	L2	9	0.0	0.014	6.6	LOS A	0.0	0.3	0.52	0.64	44.9
3	R2	1	0.0	0.014	15.6	LOS B	0.0	0.3	0.52	0.64	44.5
Appro	ach	11	0.0	0.014	7.5	LOS A	0.0	0.3	0.52	0.64	44.9
East: /	Amy St East										
4	L2	1	0.0	0.278	4.6	LOS A	0.0	0.0	0.00	0.00	49.5
5	T1	541	0.0	0.278	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Appro	ach	542	0.0	0.278	0.0	NA	0.0	0.0	0.00	0.00	49.9
West:	Amy St Wes	st									
11	T1	734	0.0	0.379	0.1	LOS A	0.0	0.0	0.00	0.00	49.9
12	R2	4	0.0	0.379	4.6	LOS A	0.0	0.0	0.00	0.00	48.9
Appro	ach	738	0.0	0.379	0.1	NA	0.0	0.0	0.00	0.00	49.9
All Vel	nicles	1291	0.0	0.379	0.1	NA	0.0	0.3	0.00	0.01	49.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:45 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Smith St AM Future]

Amy St / Smith St Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								l
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Smith St										
1	L2	11	0.0	0.018	7.1	LOS A	0.1	0.4	0.56	0.68	44.4
3	R2	1	0.0	0.018	21.3	LOS B	0.1	0.4	0.56	0.68	44.1
Approa	ach	12	0.0	0.018	8.4	LOS A	0.1	0.4	0.56	0.68	44.4
East: A	Amy St East										
4	L2	1	0.0	0.320	4.6	LOS A	0.0	0.0	0.00	0.00	49.5
5	T1	622	0.0	0.320	0.0	LOS A	0.0	0.0	0.00	0.00	49.9
Approa	ach	623	0.0	0.320	0.0	NA	0.0	0.0	0.00	0.00	49.9
West:	Amy St Wes	st									
11	T1	844	0.0	0.436	0.1	LOS A	0.0	0.0	0.00	0.00	49.9
12	R2	5	0.0	0.436	4.6	LOS A	0.0	0.0	0.00	0.00	48.9
Approa	ach	849	0.0	0.436	0.1	NA	0.0	0.0	0.00	0.00	49.9
All Vel	nicles	1484	0.0	0.436	0.1	NA	0.1	0.4	0.00	0.01	49.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:46 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Smith St AM Future wDev]

Amy St / Smith St Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - \	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Smith St										
1	L2	35	0.0	0.153	7.3	LOS A	0.5	3.3	0.71	0.85	42.0
3	R2	21	0.0	0.153	22.7	LOS B	0.5	3.3	0.71	0.85	41.7
Approa	ach	56	0.0	0.153	13.1	LOS A	0.5	3.3	0.71	0.85	41.9
East: A	Amy St East										
4	L2	12	0.0	0.325	4.6	LOS A	0.0	0.0	0.00	0.01	49.4
5	T1	622	0.0	0.325	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
Approa	ach	634	0.0	0.325	0.1	NA	0.0	0.0	0.00	0.01	49.9
West:	Amy St Wes	st									
11	T1	844	0.0	0.436	0.1	LOS A	0.0	0.0	0.00	0.00	49.9
12	R2	5	0.0	0.436	4.6	LOS A	0.0	0.0	0.00	0.00	48.9
Approa	ach	849	0.0	0.436	0.1	NA	0.0	0.0	0.00	0.00	49.9
All Vel	nicles	1539	0.0	0.436	0.6	NA	0.5	3.3	0.03	0.04	49.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:47 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Smith St PM Existing]

Amy St / Smith St Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/r
South:	Smith St										
1	L2	3	0.0	0.008	8.1	LOS A	0.0	0.2	0.65	0.72	43.7
3	R2	1	0.0	0.008	15.3	LOS B	0.0	0.2	0.65	0.72	43.3
Appro	ach	4	0.0	0.008	9.9	LOS A	0.0	0.2	0.65	0.72	43.6
East: A	Amy St East										
4	L2	2	0.0	0.388	4.6	LOS A	0.0	0.0	0.00	0.00	49.4
5	T1	754	0.0	0.388	0.1	LOS A	0.0	0.0	0.00	0.00	49.9
Approa	ach	756	0.0	0.388	0.1	NA	0.0	0.0	0.00	0.00	49.9
West:	Amy St Wes	st									
11	T1	500	0.0	0.263	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
12	R2	13	0.0	0.263	4.6	LOS A	0.0	0.0	0.00	0.01	48.9
Appro	ach	513	0.0	0.263	0.1	NA	0.0	0.0	0.00	0.01	49.9
All Vel	nicles	1273	0.0	0.388	0.1	NA	0.0	0.2	0.00	0.01	49.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:47 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Smith St PM Future]

Amy St / Smith St Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Smith St										
1	L2	3	0.0	0.011	9.3	LOS A	0.0	0.2	0.73	0.79	42.5
3	R2	1	0.0	0.011	20.7	LOS B	0.0	0.2	0.73	0.79	42.2
Approa	ach	4	0.0	0.011	12.1	LOS A	0.0	0.2	0.73	0.79	42.4
East: A	Amy St East										
4	L2	2	0.0	0.445	4.6	LOS A	0.0	0.0	0.00	0.00	49.4
5	T1	866	0.0	0.445	0.1	LOS A	0.0	0.0	0.00	0.00	49.9
Approa	ach	868	0.0	0.445	0.1	NA	0.0	0.0	0.00	0.00	49.9
West:	Amy St Wes	st									
11	T1	575	0.0	0.303	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
12	R2	15	0.0	0.303	4.6	LOS A	0.0	0.0	0.00	0.01	48.9
Approa	ach	589	0.0	0.303	0.1	NA	0.0	0.0	0.00	0.01	49.8
All Vel	nicles	1462	0.0	0.445	0.1	NA	0.0	0.2	0.00	0.01	49.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:48 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

V Site: 101 [Amy St / Smith St PM Future wDev]

Amy St / Smith St Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Smith St										
1	L2	16	0.0	0.084	9.5	LOS A	0.3	1.8	0.78	0.90	41.4
3	R2	11	0.0	0.084	22.0	LOS B	0.3	1.8	0.78	0.90	41.0
Approa	ach	26	0.0	0.084	14.5	LOS B	0.3	1.8	0.78	0.90	41.2
East: A	Amy St East										
4	L2	21	0.0	0.456	4.6	LOS A	0.0	0.0	0.00	0.01	49.4
5	T1	866	0.0	0.456	0.1	LOS A	0.0	0.0	0.00	0.01	49.8
Approa	ach	887	0.0	0.456	0.2	NA	0.0	0.0	0.00	0.01	49.8
West:	Amy St Wes	st									
11	T1	575	0.0	0.303	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
12	R2	15	0.0	0.303	4.6	LOS A	0.0	0.0	0.00	0.01	48.9
Approa	ach	589	0.0	0.303	0.1	NA	0.0	0.0	0.00	0.01	49.8
All Vel	nicles	1503	0.0	0.456	0.4	NA	0.3	1.8	0.01	0.03	49.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 14 August 2017 4:43:49 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Amy St Intersections SIDRA.sip7

Site: 101 [Amy St / Joseph St / Weeroona Rd AM Existing - Copy]

Amy St / Joseph St / Weeroona Rd

Signals - Fixed Time Isolated Cycle Time = 145 seconds (Optimum Cycle Time - Minimum Delay)

nent Perf	ormance - \									
0.0							10			
										Average Speed
IVIOV					Service			Queueu		km/h
Joseph St		/0	.,							
L2	387	0.0	1.001	92.7	LOS F	102.2	715.5	1.00	1.15	24.7
T1	2655	0.0	1.001	87.0	LOS F	103.8	726.7	1.00	1.20	27.4
R2	227	0.0	0.592	63.3	LOS E	14.6	102.3	0.96	0.83	29.8
ch	3269	0.0	1.001	86.0	LOS F	103.8	726.7	1.00	1.17	27.2
/eeroona F	Rd									
L2	94	0.0	0.145	53.9	LOS D	6.2	43.2	0.86	0.77	33.3
T1	56	0.0	0.145	56.5	LOS D	6.2	43.2	0.89	0.72	29.5
R2	1	0.0	0.145	63.2	LOS E	2.6	18.4	0.90	0.70	31.9
ch	151	0.0	0.145	54.9	LOS D	6.2	43.2	0.87	0.75	31.7
Joseph St I	North									
L2	1	0.0	0.672	46.2	LOS D	29.3	205.4	0.89	0.79	36.9
T1	1518	0.0	0.672	39.2	LOS C	29.3	205.4	0.89	0.79	43.1
R2	113	0.0	1.099	191.4	LOS F	13.6	94.9	1.00	1.15	14.6
ch	1632	0.0	1.099	49.7	LOS D	29.3	205.4	0.90	0.82	37.9
my St										
L2	146	0.0	0.558	50.6	LOS D	18.5	129.8	0.90	0.80	33.0
T1	166	0.0	0.558	46.0	LOS D	18.5	129.8	0.90	0.80	32.2
R2	343	0.0	0.984	108.4	LOS F	30.6	214.1	1.00	1.29	21.5
ch	656	0.0	0.984	79.7	LOS F	30.6	214.1	0.95	1.06	25.6
cles	5707	0.0	1.099	74.1	LOS F	103.8	726.7	0.96	1.04	29.5
	L2 T1 R2 ch eeroona F L2 T1 R2 ch oseph St I L2 T1 R2 ch my St L2 T1 R2 ch	Mov Total veh/h Joseph St South 1 L2 387 T1 2655 R2 227 ch 3269 deeroona Rd 1 L2 94 T1 56 R2 1 ch 151 oseph St North 1 L2 1 T1 1518 R2 113 ch 1632 my St 1 L2 146 T1 1666 R2 343 ch 656	Mov Total veh/h HV % Joseph St South 1 L2 387 0.0 T1 2655 0.0 R2 227 0.0 ch 3269 0.0 cecoona Rd 1 1 L2 94 0.0 T1 56 0.0 R2 1 0.0 Ch 151 0.0 R2 1 0.0 ch 151 0.0 ch 151 0.0 ch 1632 0.0 my St L2 146 0.0 R2 146 0.0 R2 343 ch 656 0.0 R2 343	MovTotal veh/hHV %Sati v/cJoseph St South1.001L23870.0T126550.0R22270.00.5920.0ch32690.01001R22270.0ch32690.011560.012940.00.145T1560.0R210.00.145ch1510.00.145ch1510.00.672T115180.00.672R21130.01.099ch16320.01.099ch6560.00.984ch6560.0	MovTotal veh/hHV %Sati v/cDelay secJoseph St SouthL2 387 0.0 1.001 92.7 T1 2655 0.0 1.001 87.0 R2 227 0.0 0.592 63.3 ch 3269 0.0 1.001 86.0 eeroona Rd U U U L2 94 0.0 0.145 53.9 T1 56 0.0 0.145 56.5 R21 0.0 0.145 63.2 ch 151 0.0 0.145 54.9 oseph St North U U U L2 1 0.0 0.672 39.2 R2 113 0.0 1.099 191.4 ch 1632 0.0 1.099 49.7 my St U U U U L2 146 0.0 0.558 50.6 T1 166 0.0 0.984 108.4 ch 656 0.0 0.984 79.7	Mov Total veh/h HV % Satn v/c Delay sec Service Joseph St South 1.001 92.7 LOS F L2 387 0.0 1.001 92.7 LOS F T1 2655 0.0 1.001 87.0 LOS F R2 227 0.0 0.592 63.3 LOS F ch 3269 0.0 1.001 86.0 LOS F eeroona Rd 1 1.001 86.0 LOS D T1 56 0.0 0.145 53.9 LOS D R2 1 0.0 0.145 63.2 LOS D R2 1 0.0 0.145 54.9 LOS D oseph St North 1 151 0.0 0.672 39.2 LOS C R2 113 0.0 1.099 191.4 LOS F ch 1632 0.0 1.099 49.7 LOS D my St 1 1.06 0.0	Mov Total veh/h HV % Sath v/c Delay sec Service Vehicles veh Joseph St South 1.001 92.7 LOS F 102.2 T1 2655 0.0 1.001 87.0 LOS F 103.8 R2 227 0.0 0.592 63.3 LOS F 103.8 eeroona Rd 1.001 86.0 LOS F 103.8 eeroona Rd 1.00 0.145 53.9 LOS D 6.2 T1 56 0.0 0.145 56.5 LOS D 6.2 R2 1 0.0 0.145 54.9 LOS D 6.2 R2 1 0.0 0.672 39.2 LOS D 29.3 T1 1518 0.0 0.672 39.2 LOS D 29.3 R2 113 0.0 1.099 191.4 LOS F 13.6 ch 1632 0.0 1.099 49.7 LOS D 29.3 my St	Mov Total veh/h HV % Sath v/c Delay sec Service Vehicles veh Distance m L2 387 0.0 1.001 92.7 LOS F 102.2 715.5 T1 2655 0.0 1.001 87.0 LOS F 103.8 726.7 R2 227 0.0 0.592 63.3 LOS F 103.8 726.7 R2 227 0.0 0.1001 86.0 LOS F 103.8 726.7 ceroona Rd 1.001 86.0 LOS F 103.8 726.7 L2 94 0.0 0.145 53.9 LOS D 6.2 43.2 T1 56 0.0 0.145 56.5 LOS D 6.2 43.2 R2 1 0.0 0.145 54.9 LOS D 6.2 43.2 rt1 151 0.0 0.672 39.2 LOS D 29.3 205.4 T1 1518	Mov Total veh/h HV % Sain v/c Delay sec Service Vehicles veh Distance m Queued m L2 387 0.0 1.001 92.7 LOS F 102.2 715.5 1.00 T1 2655 0.0 1.001 87.0 LOS F 103.8 726.7 1.00 R2 227 0.0 0.592 63.3 LOS F 103.8 726.7 1.00 eeroona Rd 1.001 86.0 LOS F 103.8 726.7 1.00 eeroona Rd 1.00 0.145 53.9 LOS D 6.2 43.2 0.86 T1 56 0.0 0.145 56.5 LOS D 6.2 43.2 0.87 cseph St North L2 1 0.0 0.672 39.2 LOS D 29.3 205.4 0.89 T1 1518 0.0 0.672 39.2 LOS D <td< td=""><td>Mov Total veh/h HV % Sain v/c Delay sec Service Vehicles Distance weh Queued Stop Rate per veh Joseph St South 1 2 387 0.0 1.001 92.7 LOS F 102.2 715.5 1.00 1.15 T1 2655 0.0 1.001 87.0 LOS F 103.8 726.7 1.00 1.20 R2 227 0.0 0.592 63.3 LOS F 103.8 726.7 1.00 1.17 eeroona Rd </td></td<>	Mov Total veh/h HV % Sain v/c Delay sec Service Vehicles Distance weh Queued Stop Rate per veh Joseph St South 1 2 387 0.0 1.001 92.7 LOS F 102.2 715.5 1.00 1.15 T1 2655 0.0 1.001 87.0 LOS F 103.8 726.7 1.00 1.20 R2 227 0.0 0.592 63.3 LOS F 103.8 726.7 1.00 1.17 eeroona Rd

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P3	North Full Crossing	53	66.8	LOS F	0.2	0.2	0.96	0.96
All Pe	destrians	53	66.8	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Amy St / Joseph St / Weeroona Rd AM Existing]

Amy St / Joseph St / Weeroona Rd

Signals - Fixed Time Isolated Cycle Time = 145 seconds (Optimum Cycle Time - Minimum Delay)

		ormance - \									
Mov ID	OD Mov	Demand Total	Hows HV	Deg. Satn	Average Delay	Level of Service	95% Back c Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
U	IVIOV	veh/h	пv %	v/c	Sec	Service	venicies veh	m	Queueu	per veh	speeu km/h
South:	Joseph St		/0	110	000		Von				
1	L2	387	0.0	1.014	100.8	LOS F	105.9	741.4	1.00	1.19	23.4
2	T1	2655	0.0	1.014	95.6	LOS F	107.6	752.9	1.00	1.24	25.8
3	R2	227	0.0	0.634	65.5	LOS E	14.9	104.4	0.97	0.83	29.3
Approa	ach	3269	0.0	1.014	94.1	LOS F	107.6	752.9	1.00	1.20	25.7
East: \	Neeroona F	٦d									
4	L2	94	0.0	0.101	29.4	LOS C	3.9	27.1	0.61	0.71	42.5
5	T1	56	0.0	0.101	41.6	LOS C	3.9	27.1	0.77	0.65	33.7
6	R2	1	0.0	0.101	47.1	LOS D	2.8	19.3	0.78	0.65	37.0
Approa	ach	151	0.0	0.101	34.0	LOS C	3.9	27.1	0.67	0.69	38.7
North:	Joseph St	North									
7	L2	1	0.0	0.649	44.4	LOS D	28.7	200.6	0.87	0.78	37.6
8	T1	1518	0.0	0.649	37.5	LOS C	28.7	200.6	0.87	0.78	44.0
9	R2	113	0.0	0.977	111.5	LOS F	10.1	70.4	1.00	1.01	21.4
Approa	ach	1632	0.0	0.977	42.6	LOS D	28.7	200.6	0.88	0.79	41.0
West:	Amy St										
10	L2	146	0.0	0.558	50.6	LOS D	18.5	129.8	0.90	0.80	33.0
11	T1	166	0.0	0.558	46.0	LOS D	18.5	129.8	0.90	0.80	32.2
12	R2	343	0.0	1.021	132.1	LOS F	37.0	259.1	1.00	1.21	18.9
Approa	ach	656	0.0	1.021	92.1	LOS F	37.0	259.1	0.95	1.01	23.6
All Veł	nicles	5707	0.0	1.021	77.5	LOS F	107.6	752.9	0.95	1.05	28.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P3	North Full Crossing	53	66.8	LOS F	0.2	0.2	0.96	0.96
All Pe	destrians	53	66.8	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Amy St / Joseph St / Weeroona Rd AM Future]

Amy St / Joseph St / Weeroona Rd

Signals - Fixed Time Isolated Cycle Time = 145 seconds (Optimum Cycle Time - Minimum Delay)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Joseph St	veh/h	%	v/c	sec		veh	m		per veh	km/l
30um. 1	L2	445	0.0	1.180	236.7	LOS F	178.6	1250.4	1.00	1.65	12.5
-											
2	T1	3053	0.0	1.180	231.2	LOS F	181.7	1272.2	1.00	1.79	13.
3	R2	261	0.0	0.755	69.7	LOS E	18.1	126.7	1.00	0.86	28.3
Appro	ach	3759	0.0	1.180	220.6	LOS F	181.7	1272.2	1.00	1.71	13.
East: \	Neeroona R	Rd									
4	L2	107	0.0	0.116	29.0	LOS C	4.4	30.7	0.60	0.72	42.
5	T1	64	0.0	0.116	42.0	LOS C	4.4	30.7	0.77	0.66	33.
6	R2	1	0.0	0.116	47.3	LOS D	3.2	22.6	0.78	0.66	36.
Approa	ach	173	0.0	0.116	33.9	LOS C	4.4	30.7	0.67	0.70	38.
North:	Joseph St I	North									
7	L2	1	0.0	0.746	46.5	LOS D	34.8	243.6	0.92	0.83	36.
8	T1	1745	0.0	0.746	39.6	LOS C	34.8	243.6	0.92	0.83	42.
9	R2	129	0.0	1.123	211.1	LOS F	16.5	115.5	1.00	1.18	13.
Approa	ach	1876	0.0	1.123	51.4	LOS D	34.8	243.6	0.93	0.85	37.
West:	Amy St										
10	L2	168	0.0	0.628	51.1	LOS D	21.8	152.6	0.92	0.82	32.
11	T1	192	0.0	0.628	46.5	LOS D	21.8	152.6	0.92	0.82	32.
12	R2	395	0.0	1.178	253.9	LOS F	59.2	414.5	1.00	1.53	11.
Approa	ach	755	0.0	1.178	156.0	LOS F	59.2	414.5	0.96	1.19	16.
All Veł	nicles	6562	0.0	1.180	159.9	LOS F	181.7	1272.2	0.97	1.38	17

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P3	North Full Crossing	53	66.8	LOS F	0.2	0.2	0.96	0.96
All Pe	destrians	53	66.8	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Amy St / Joseph St / Weeroona Rd AM Future wDev]

Amy St / Joseph St / Weeroona Rd

Signals - Fixed Time Isolated Cycle Time = 135 seconds (Optimum Cycle Time - Minimum Delay)

rformance - Demand Total veh/h it South 447 3053 261 3761		Deg. Satn v/c 1.189 1.189	Average Delay sec 242.1	Level of Service	95% Back o Vehicles veh	Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
Total veh/h t South 447 3053 261	HV % 0.0 0.0	Satn v/c 1.189 1.189	Delay sec 242.1	Service	Vehicles veh	Distance m		Stop Rate	Speed
veh/h t South 447 3053 261	% 0.0 0.0	v/c 1.189 1.189	sec 242.1		veh	m	Queueu		
t South 447 3053 261	0.0 0.0	1.189 1.189	242.1	LOS F					
3053 261	0.0	1.189		LOS F	174.0				
261			000 4		174.9	1224.1	1.00	1.72	12.3
	0.0		236.4	LOS F	178.0	1245.7	1.00	1.88	12.9
3761		0.825	71.6	LOS F	18.0	125.8	1.00	0.89	27.9
0.0.	0.0	1.189	225.6	LOS F	178.0	1245.7	1.00	1.79	13.4
Rd									
107	0.0	0.118	27.0	LOS B	4.0	28.3	0.60	0.72	43.7
65	0.0	0.118	38.8	LOS C	4.0	28.3	0.77	0.66	34.6
1	0.0	0.118	43.9	LOS D	3.1	21.4	0.78	0.65	38.2
174	0.0	0.118	31.5	LOS C	4.0	28.3	0.66	0.69	39.8
t North									
156	0.0	0.801	45.2	LOS D	36.5	255.5	0.95	0.87	36.6
1745	0.0	0.801	38.2	LOS C	36.9	258.1	0.95	0.86	43.4
132	0.0	1.196	267.8	LOS F	18.7	131.2	1.00	1.29	11.2
2033	0.0	1.196	53.6	LOS D	36.9	258.1	0.95	0.89	36.1
171	0.0	0.637	48.1	LOS D	20.7	145.0	0.92	0.82	33.7
195	0.0	0.637	43.5	LOS D	20.7	145.0	0.92	0.82	32.9
401	0.0	1.199	267.4	LOS F	60.2	421.1	1.00	1.62	11.1
766	0.0	1.199	161.7	LOS F	60.2	421.1	0.96	1.24	16.3
6734	0.0	1.199	161.4	LOS F	178.0	1245.7	0.97	1.43	17.3
	107 65 1 174 North 156 1745 132 2033 2033 171 195 401 766	3761 0.0 Rd 107 0.0 65 0.0 1 174 0.0 174 174 0.0 174 156 0.0 1745 132 0.0 2033 0.0 171 0.0 195 0.0 195 0.0 10.0 195 0.0 401 0.0 766 0.0 0.0	3761 0.0 1.189 Rd 107 0.0 0.118 65 0.0 0.118 1 0.0 0.118 174 0.0 0.118 174 0.0 0.118 174 0.0 0.118 1745 0.0 0.801 1745 0.0 0.801 132 0.0 1.196 2033 0.0 1.196 401 0.0 1.199 766 0.0 1.199	3761 0.0 1.189 225.6 Rd 27.0 65 0.0 0.118 27.0 65 0.0 0.118 38.8 1 0.0 0.118 38.8 1 0.0 0.118 38.9 1 3761 0.0 0.118 31.5 North 203 0.0 0.801 45.2 38.2 38.2 38.2 32.0 1.196 267.8 2033 0.0 1.196 53.6 2033 0.0 1.196 53.6 171 0.0 0.637 48.1 195 0.0 0.637 43.5 401 0.0 1.199 267.4 766 0.0 1.199 161.7	3761 0.0 1.189 225.6 LOS F Rd 107 0.0 0.118 27.0 LOS B 65 0.0 0.118 38.8 LOS C 1 0.0 0.118 38.8 LOS D 174 0.0 0.118 31.5 LOS C North 156 0.0 0.801 45.2 LOS D 1745 0.0 0.801 38.2 LOS C 132 0.0 1.196 267.8 LOS F 2033 0.0 1.196 53.6 LOS D 195 0.0 0.637 48.1 LOS D 401 0.0 1.199 267.4 LOS F 766 0.0 1.199 161.7 LOS F	3761 0.0 1.189 225.6 LOS F 178.0 Rd 107 0.0 0.118 27.0 LOS B 4.0 65 0.0 0.118 38.8 LOS C 4.0 1 0.0 0.118 38.8 LOS C 4.0 1 0.0 0.118 38.8 LOS C 4.0 1 0.0 0.118 31.5 LOS D 3.1 174 0.0 0.118 31.5 LOS C 4.0 North 156 0.0 0.801 45.2 LOS D 36.5 1745 0.0 0.801 38.2 LOS C 36.9 132 0.0 1.196 267.8 LOS D 36.9 2033 0.0 1.196 53.6 LOS D 20.7 195 0.0 0.637 48.1 LOS F 60.2 766 0.0 1.199 267.4 LOS F 60.2 766 0.	3761 0.0 1.189 225.6 LOS F 178.0 1245.7 Rd 107 0.0 0.118 27.0 LOS B 4.0 28.3 65 0.0 0.118 38.8 LOS C 4.0 28.3 1 0.0 0.118 38.8 LOS D 3.1 21.4 174 0.0 0.118 31.5 LOS D 3.1 21.4 174 0.0 0.118 31.5 LOS C 4.0 28.3 North 156 0.0 0.801 45.2 LOS D 3.1 21.4 1745 0.0 0.801 38.2 LOS C 4.0 28.3 132 0.0 1.196 267.8 LOS F 18.7 131.2 2033 0.0 1.196 53.6 LOS D 20.7 145.0 195 0.0 0.637 48.1 LOS F 60.2 421.1 766 0.0 1.199 267.4	3761 0.0 1.189 225.6 LOS F 178.0 1245.7 1.00 Rd	3761 0.0 1.189 225.6 LOS F 178.0 1245.7 1.00 1.79 Rd

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P3	North Full Crossing	53	61.8	LOS F	0.2	0.2	0.96	0.96
All Pe	destrians	53	61.8	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Amy St / Joseph St / Weeroona Rd PM Existing]

Amy St / Joseph St / Weeroona Rd

Signals - Fixed Time Isolated Cycle Time = 125 seconds (Optimum Cycle Time - Minimum Delay)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Joseph St	veh/h	%	v/c	sec		veh	m		per veh	km/ł
1	L2	468	0.0	0.892	56.2	LOS D	43.2	302.1	1.00	0.97	32.0
2	T1	400 1554	0.0	0.892	48.8	LOS D	43.2	310.8	1.00	1.00	38.
2 3	R2	1554 95	0.0	0.892		LOS D LOS F	44.4 6.7	310.8 47.1	1.00		30.: 25.:
-					84.9					0.94	
Appro	ach	2117	0.0	0.911	52.1	LOS D	44.4	310.8	1.00	0.99	36.0
East:	Weeroona F	Rd									
4	L2	218	0.0	0.267	29.1	LOS C	8.3	58.2	0.67	0.76	42.0
5	T1	135	0.0	0.209	32.8	LOS C	5.8	40.9	0.75	0.67	36.8
6	R2	1	0.0	0.209	37.1	LOS C	5.8	40.9	0.75	0.67	41.2
Appro	ach	354	0.0	0.267	30.5	LOS C	8.3	58.2	0.71	0.72	40.2
North:	Joseph St I	North									
7	L2	1	0.0	0.938	61.6	LOS E	61.2	428.5	1.00	1.08	31.9
8	T1	2484	0.0	0.938	54.6	LOS D	61.2	428.5	0.99	1.08	36.5
9	R2	213	0.0	0.894	78.0	LOS F	14.8	103.6	1.00	0.95	26.6
Appro	ach	2698	0.0	0.938	56.4	LOS D	61.2	428.5	0.99	1.06	35.4
West:	Amy St										
10	L2	164	0.0	0.320	34.0	LOS C	9.7	67.9	0.75	0.73	38.2
11	T1	62	0.0	0.320	29.5	LOS C	9.7	67.9	0.75	0.73	37.1
12	R2	299	0.0	0.933	81.5	LOS F	23.7	166.2	1.00	1.10	25.
Appro	ach	525	0.0	0.933	60.5	LOS E	23.7	166.2	0.89	0.94	29.
All Vel	hicles	5694	0.0	0.938	53.6	LOS D	61.2	428.5	0.97	1.01	35.

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P3	North Full Crossing	53	56.8	LOS E	0.2	0.2	0.95	0.95
All Pe	destrians	53	56.8	LOS E			0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Amy St / Joseph St / Weeroona Rd PM Future - Copy wDev]

Amy St / Joseph St / Weeroona Rd

Signals - Fixed Time Isolated Cycle Time = 115 seconds (Optimum Cycle Time - Minimum Delay)

		ormance - \									
Mov	OD	Demand		Deg.	Average	Level of	95% Back c		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South:	Joseph St		/0	V/C	300		VCII				KIII/I
1	L2	545	0.0	1.031	115.2	LOS F	70.3	492.4	1.00	1.22	21.1
2	T1	1786	0.0	1.031	106.5	LOS F	72.6	508.3	1.00	1.35	23.9
3	R2	109	0.0	1.130	200.0	LOS F	12.4	87.0	1.00	1.21	14.1
Approa	ach	2441	0.0	1.130	112.6	LOS F	72.6	508.3	1.00	1.32	22.6
East: \	Neeroona F	٦d									
4	L2	251	0.0	0.485	43.0	LOS D	11.8	82.4	0.89	0.81	36.7
5	T1	158	0.0	0.470	48.0	LOS D	8.2	57.1	0.95	0.78	31.9
6	R2	1	0.0	0.470	52.4	LOS D	8.2	57.1	0.95	0.78	35.2
Approa	ach	409	0.0	0.485	44.9	LOS D	11.8	82.4	0.91	0.80	34.7
North:	Joseph St	North									
7	L2	186	0.0	1.152	206.5	LOS F	130.5	913.2	1.00	1.84	14.0
8	T1	2857	0.0	1.152	200.3	LOS F	131.6	920.9	1.00	1.86	14.8
9	R2	247	0.0	1.094	170.1	LOS F	26.0	181.8	1.00	1.23	16.0
Approa	ach	3291	0.0	1.152	198.4	LOS F	131.6	920.9	1.00	1.81	14.9
West:	Amy St										
10	L2	189	0.0	0.372	32.6	LOS C	10.6	74.1	0.77	0.75	38.8
11	T1	72	0.0	0.372	28.0	LOS B	10.6	74.1	0.77	0.75	37.7
12	R2	345	0.0	1.041	100.8	LOS F	30.1	210.4	1.00	1.29	22.5
Approa	ach	606	0.0	1.041	70.9	LOS F	30.1	210.4	0.90	1.06	27.4
All Veł	nicles	6747	0.0	1.152	146.6	LOS F	131.6	920.9	0.99	1.50	18.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P3	North Full Crossing	53	51.8	LOS E	0.2	0.2	0.95	0.95
All Pe	destrians	53	51.8	LOS E			0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Amy St / Joseph St / Weeroona Rd PM Future]

Amy St / Joseph St / Weeroona Rd

Signals - Fixed Time Isolated Cycle Time = 145 seconds (Optimum Cycle Time - Minimum Delay)

Mov	OD	Demand		Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Joseph St	veh/h	%	V/C	sec	_	veh	m	_	per veh	km/l
1	L2	539	0.0	1.032	125.5	LOS F	82.9	580.0	1.00	1.17	19.
2	T1	1786	0.0	1.032	118.6	LOS F	85.4	597.8	1.00	1.30	22.
2	R2	109	0.0	1.068	166.9	LOS F	12.2	85.4	1.00	1.11	16.
o Approa		2435	0.0	1.068	122.3	LOS F	85.4	597.8	1.00	1.26	21.
Fast: \	Neeroona F	?d									
4	L2	251	0.0	0.296	31.8	LOS C	11.0	76.7	0.67	0.76	41.
5	T1	155	0.0	0.224	35.6	LOS C	7.6	52.9	0.74	0.66	35.
6	R2	1	0.0	0.224	39.9	LOS C	7.6	52.9	0.74	0.66	39.
Approach		406	0.0	0.296	33.3	LOS C	11.0	76.7	0.70	0.73	39.
North:	Joseph St I	North									
7	L2	1	0.0	1.091	164.2	LOS F	122.8	859.6	1.00	1.53	16.
8	T1	2857	0.0	1.091	159.2	LOS F	122.8	859.6	1.00	1.53	17.
9	R2	244	0.0	1.059	159.4	LOS F	27.2	190.1	1.00	1.12	16.
Approa	ach	3102	0.0	1.091	159.2	LOS F	122.8	859.6	1.00	1.49	17.
West:	Amy St										
10	L2	188	0.0	0.352	36.8	LOS C	12.7	88.6	0.74	0.74	37.
11	T1	72	0.0	0.352	32.2	LOS C	12.7	88.6	0.74	0.74	36.
12	R2	344	0.0	1.091	185.0	LOS F	44.7	313.0	1.00	1.37	14.
Approa	ach	604	0.0	1.091	120.7	LOS F	44.7	313.0	0.89	1.10	20.
All Veł	nicles	6547	0.0	1.091	134.1	LOS F	122.8	859.6	0.97	1.32	19

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P3	North Full Crossing	53	66.8	LOS F	0.2	0.2	0.96	0.96
All Pe	destrians	53	66.8	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 2 [2 EX AM - Auburn/Amy - NEW BRIDGE]

Auburn Road / Amy Street (NEW BRIDGE) AM Peak Period Existing - with upgrades Roundabout

Move	ment P	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Auburn	Road (S)											
1	L2	434	4.6	434	4.6	0.494	7.6	LOS A	3.8	27.8	0.75	0.79	34.4
2	T1	474	4.6	474	4.6	0.493	5.5	LOS A	3.8	28.0	0.74	0.72	37.9
Appro	ach	908	4.6	908	4.6	0.494	6.5	LOS A	3.8	28.0	0.75	0.75	36.7
North:	North: Amy Street												
8	T1	295	4.6	295	4.6	0.378	5.2	LOS A	2.2	16.0	0.62	0.67	38.1
9	R2	404	4.6	404	4.6	0.531	8.8	LOS A	3.5	25.5	0.68	0.82	33.7
Appro	ach	699	4.6	699	4.6	0.531	7.3	LOS A	3.5	25.5	0.66	0.76	36.2
West:	Auburn I	Road (W)											
10	L2	381	4.6	372	4.6	0.449	6.8	LOS A	3.0	21.8	0.71	0.80	34.8
12	R2	386	4.6	377	4.6	0.445	7.9	LOS A	3.0	21.6	0.71	0.81	34.9
Appro	ach	767	4.6	<mark>748</mark> ^{N1}	4.6	0.449	7.4	LOS A	3.0	21.8	0.71	0.81	34.9
All Vel	hicles	2374	4.6	2355 ^{N1}	4.7	0.531	7.0	LOS A	3.8	28.0	0.71	0.77	36.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Tuesday, 15 August 2017 1:32:45 PM

Site: 2 [2 FU AM - Auburn/Amy - NEW BRIDGE]

Auburn Road / Amy Street (NEW BRIDGE) AM Peak Period Existing + Potts Hill + Dev - with upgrades Roundabout

Move	ment P	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	Auburn	Road (S)											
1	L2	499	4.6	499	4.6	0.643	11.3	LOS A	6.7	49.1	0.91	0.99	32.1
2	T1	545	4.6	545	4.6	0.634	8.7	LOS A	6.7	49.0	0.90	0.96	36.8
Appro	ach	1044	4.6	1044	4.6	0.643	9.9	LOS A	6.7	49.1	0.90	0.98	35.2
North:	North: Amy Street												
8	T1	339	4.6	339	4.6	0.459	5.8	LOS A	3.0	21.5	0.68	0.74	37.9
9	R2	504	4.6	504	4.6	0.827	15.0	LOS B	7.7	55.8	0.79	1.07	30.3
Appro	ach	843	4.6	843	4.6	0.827	11.3	LOS A	7.7	55.8	0.75	0.93	34.2
West:	Auburn I	Road (W)											
10	L2	438	4.6	385	4.6	0.517	8.2	LOS A	4.0	29.3	0.81	0.91	33.9
12	R2	444	4.6	391	4.6	0.509	9.2	LOS A	4.0	28.8	0.81	0.91	34.2
Appro	ach	882	4.6	<mark>776</mark> ^{N1}	4.6	0.517	8.7	LOS A	4.0	29.3	0.81	0.91	34.0
All Vel	nicles	2769	4.6	2663 ^{N1}	4.8	0.827	10.0	LOS A	7.7	55.8	0.82	0.94	34.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:56:51 AM

V Site: 2 [2 FU AM - Auburn/Amy - NEW BRIDGE - Dev]

Auburn Road / Amy Street (NEW BRIDGE) AM Peak Period Existing + Potts Hill + Dev - with upgrades Roundabout

Move	ment P	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Auburn	Road (S)											
1	L2	499	4.6	499	4.6	0.616	10.2	LOS A	6.1	44.6	0.87	0.94	32.7
2	T1	547	4.6	547	4.6	0.612	7.8	LOS A	6.2	45.1	0.86	0.90	37.2
Appro	ach	1046	4.6	1046	4.6	0.616	9.0	LOS A	6.2	45.1	0.87	0.92	35.6
North:	North: Amy Street												
8	T1	348	4.6	348	4.6	0.454	5.6	LOS A	2.9	21.2	0.68	0.73	38.0
9	R2	470	4.6	470	4.6	0.781	13.2	LOS A	6.2	45.5	0.76	1.00	31.3
Appro	ach	818	4.6	818	4.6	0.781	10.0	LOS A	6.2	45.5	0.72	0.88	34.9
West:	Auburn I	Road (W)											
10	L2	439	4.6	385	4.6	0.514	8.2	LOS A	4.0	28.9	0.80	0.90	33.9
12	R2	444	4.6	389	4.6	0.506	9.2	LOS A	3.9	28.3	0.80	0.90	34.2
Appro	ach	883	4.6	775 ^{N1}	4.6	0.514	8.7	LOS A	4.0	28.9	0.80	0.90	34.0
All Ve	hicles	2747	4.6	2639 ^{N1}	4.8	0.781	9.2	LOS A	6.2	45.5	0.80	0.90	35.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:57:08 AM

Site: 2 [2 EX PM - Auburn/Amy - NEW BRIDGE]

Auburn Road / Amy Street (NEW BRIDGE) AM Peak Period Existing - with upgrades Roundabout

Move	ment P	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Auburn	Road (S)											
1	L2	222	2.6	222	2.6	0.270	7.9	LOS A	1.7	11.8	0.65	0.74	41.2
2	T1	268	2.6	268	2.6	0.281	6.1	LOS A	1.9	13.4	0.66	0.68	45.7
Appro	ach	490	2.6	490	2.6	0.281	6.9	LOS A	1.9	13.4	0.66	0.71	44.3
North:	Amy Str	eet											
8	T1	438	2.6	438	2.6	0.547	8.0	LOS A	4.1	29.3	0.73	0.83	44.9
9	R2	428	2.6	428	2.6	0.534	10.8	LOS A	3.9	28.0	0.72	0.87	38.9
Appro	ach	866	2.6	866	2.6	0.547	9.4	LOS A	4.1	29.3	0.72	0.85	42.7
West:	Auburn I	Road (W)											
10	L2	388	2.6	388	2.6	0.383	5.3	LOS A	2.3	16.7	0.52	0.67	42.6
12	R2	440	2.6	440	2.6	0.417	6.7	LOS A	2.7	19.0	0.54	0.70	42.3
Appro	ach	828	2.6	828	2.6	0.417	6.0	LOS A	2.7	19.0	0.53	0.69	42.4
All Vel	hicles	2184	2.6	2184	2.6	0.547	7.6	LOS A	4.1	29.3	0.63	0.76	43.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:56:42 AM

Site: 2 [2 FU PM - Auburn/Amy - NEW BRIDGE]

Auburn Road / Amy Street (NEW BRIDGE) AM Peak Period Existing + Potts Hill + Dev - with upgrades Roundabout

Move	ment P	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Auburn	Road (S)											
1	L2	255	2.6	255	2.6	0.479	9.1	LOS A	2.3	16.7	0.74	0.84	40.1
2	T1	308	2.6	308	2.6	0.350	6.7	LOS A	2.5	18.0	0.74	0.74	45.5
Appro	ach	563	2.6	563	2.6	0.479	7.8	LOS A	2.5	18.0	0.74	0.78	43.7
North:	North: Amy Street												
8	T1	504	2.6	504	2.6	0.677	10.9	LOS A	6.6	47.0	0.85	1.01	43.4
9	R2	492	2.6	492	2.6	0.782	16.6	LOS B	7.4	53.2	0.84	1.11	34.7
Appro	ach	996	2.6	996	2.6	0.782	13.7	LOS A	7.4	53.2	0.85	1.06	40.0
West:	Auburn l	Road (W)											
10	L2	446	2.6	446	2.6	0.460	5.6	LOS A	3.0	21.8	0.60	0.71	42.2
12	R2	506	2.6	506	2.6	0.499	7.1	LOS A	3.5	24.9	0.62	0.74	41.9
Appro	ach	952	2.6	952	2.6	0.499	6.4	LOS A	3.5	24.9	0.62	0.73	42.1
All Vel	hicles	2511	2.6	2511	2.6	0.782	9.6	LOS A	7.4	53.2	0.74	0.87	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:56:59 AM

Site: 2 [2 FU PM - Auburn/Amy - NEW BRIDGE - Dev]

Auburn Road / Amy Street (NEW BRIDGE) AM Peak Period Existing + Potts Hill + Dev - with upgrades Roundabout

Move	ment P	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Auburn	Road (S)											
1	L2	255	2.6	255	2.6	0.487	9.2	LOS A	2.4	17.0	0.74	0.84	40.0
2	T1	317	2.6	317	2.6	0.361	6.7	LOS A	2.6	18.7	0.75	0.74	45.4
Appro	ach	572	2.6	572	2.6	0.487	7.8	LOS A	2.6	18.7	0.74	0.79	43.7
North:	North: Amy Street												
8	T1	506	2.6	506	2.6	0.681	11.0	LOS A	6.7	47.6	0.86	1.02	43.4
9	R2	493	2.6	493	2.6	0.786	16.7	LOS B	7.5	53.9	0.85	1.11	34.6
Appro	ach	999	2.6	999	2.6	0.786	13.8	LOS A	7.5	53.9	0.85	1.06	40.0
West:	Auburn I	Road (W)											
10	L2	451	2.6	451	2.6	0.468	5.7	LOS A	3.1	22.4	0.62	0.72	42.1
12	R2	506	2.6	506	2.6	0.504	7.2	LOS A	3.5	25.3	0.63	0.75	41.9
Appro	ach	957	2.6	957	2.6	0.504	6.5	LOS A	3.5	25.3	0.63	0.73	42.0
All Ve	hicles	2528	2.6	2528	2.6	0.786	9.7	LOS A	7.5	53.9	0.74	0.88	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:57:15 AM

Site: 1 [2 EX AM - Carlingford/Park - NEW BRIDGE]

Carlingford Street / Park Road / Auburn Road (NEW BRIDGE) AM Peak Period Existing with upgrades Roundabout

Move	ment P	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	Carling	ford Street											
2	T1	605	4.6	605	4.6	1.056	67.2	LOS E	53.8	391.2	0.94	2.27	28.0
3	R2	355	4.6	355	4.6	1.056	83.1	LOS F	53.8	391.2	1.00	2.60	16.5
Appro	ach	960	4.6	960	4.6	1.056	73.1	LOS F	53.8	391.2	0.96	2.39	24.1
East: A	Auburn F	Road											
4	L2	315	4.6	315	4.6	0.421	6.6	LOS A	2.5	18.3	0.67	0.78	45.0
6	R2	528	4.6	528	4.6	0.607	9.2	LOS A	5.3	38.3	0.77	0.88	43.0
Appro	ach	843	4.6	843	4.6	0.607	8.2	LOS A	5.3	38.3	0.73	0.85	43.8
North:	Park Ro	bad											
7	L2	360	4.6	360	4.6	0.381	8.0	LOS A	2.8	20.3	0.67	0.73	47.6
8	T1	422	4.6	422	4.6	0.392	6.7	LOS A	3.0	22.0	0.67	0.68	52.0
Appro	ach	782	4.6	782	4.6	0.392	7.3	LOS A	3.0	22.0	0.67	0.71	50.6
All Vel	nicles	2585	4.6	2585	4.6	1.056	32.0	LOS C	53.8	391.2	0.80	1.38	33.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Tuesday, 15 August 2017 1:32:45 PM Project: J:\244000\244927-00 Sydney Science Park\Work\Internal\04 Amy Street Regents Park\August 2017\Auburn Rd & Bridge - Future+Dev (WITH ROUNDABOUT UPGRADES)_NC_v02.sip7

Site: 1 [2 FU AM - Carlingford/Park - NEW BRIDGE]

Carlingford Street / Park Road / Auburn Road (NEW BRIDGE) AM Peak Period Existing + Potts Hill + Dev - with upgrades Roundabout

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Carlingford Street													
2	T1	696	4.6	696	4.6	1.352	274.8	LOS F	176.5	1284.4	0.95	5.43	10.8
3	R2	408	4.6	408	4.6	1.352	337.4	LOS F	176.5	1284.4	1.00	6.47	5.1
Appro	ach	1104	4.6	1104	4.6	1.352	297.9	LOS F	176.5	1284.4	0.97	5.81	8.6
East: /	Auburn F	Road											
4	L2	362	4.6	362	4.6	0.516	8.3	LOS A	3.7	26.7	0.75	0.89	43.4
6	R2	607	4.6	607	4.6	0.739	12.5	LOS A	8.5	61.6	0.90	1.05	40.2
Appro	ach	969	4.6	969	4.6	0.739	10.9	LOS A	8.5	61.6	0.84	0.99	41.3
North:	Park Ro	bad											
7	L2	414	4.6	414	4.6	0.421	7.9	LOS A	3.2	23.3	0.67	0.72	47.7
8	T1	485	4.6	485	4.6	0.432	6.6	LOS A	3.5	25.2	0.66	0.67	52.1
Appro	ach	899	4.6	899	4.6	0.432	7.2	LOS A	3.5	25.2	0.67	0.69	50.7
All Vel	hicles	2972	4.6	2972	4.6	1.352	116.4	LOS F	176.5	1284.4	0.84	2.69	16.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:56:51 AM

V Site: 1 [2 FU AM - Carlingford/Park - NEW BRIDGE - Dev]

Carlingford Street / Park Road / Auburn Road (NEW BRIDGE) AM Peak Period Existing + Potts Hill + Dev - with upgrades Roundabout

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Carlingford Street													
2	T1	696	4.6	696	4.6	1.361	281.2	LOS F	179.5	1306.4	0.95	5.50	10.6
3	R2	409	4.6	409	4.6	1.361	345.3	LOS F	179.5	1306.4	1.00	6.55	5.0
Appro	ach	1105	4.6	1105	4.6	1.361	304.9	LOS F	179.5	1306.4	0.97	5.89	8.4
East: A	Auburn R	Road											
4	L2	364	4.6	364	4.6	0.519	8.3	LOS A	3.7	27.0	0.75	0.89	43.3
6	R2	611	4.6	611	4.6	0.744	12.6	LOS A	8.6	62.6	0.90	1.06	40.1
Appro	ach	975	4.6	975	4.6	0.744	11.0	LOS A	8.6	62.6	0.85	1.00	41.2
North:	Park Ro	ad											
7	L2	415	4.6	415	4.6	0.421	7.9	LOS A	3.2	23.4	0.67	0.72	47.7
8	T1	485	4.6	485	4.6	0.431	6.6	LOS A	3.5	25.2	0.66	0.67	52.1
Appro	ach	900	4.6	900	4.6	0.431	7.2	LOS A	3.5	25.2	0.66	0.69	50.7
All Vel	hicles	2980	4.6	2980	4.6	1.361	118.8	LOS F	179.5	1306.4	0.84	2.72	15.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:57:08 AM

Site: 1 [2 EX PM - Carlingford/Park - NEW BRIDGE]

Carlingford Street / Park Road / Auburn Road (NEW BRIDGE) AM Peak Period Existing - with upgrades Roundabout

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Carlingford Street													
2	T1	399	2.6	399	2.6	0.601	6.8	LOS A	4.8	34.6	0.63	0.71	51.7
3	R2	338	2.6	338	2.6	0.601	9.4	LOS A	4.8	34.6	0.66	0.72	47.1
Appro	ach	737	2.6	737	2.6	0.601	8.0	LOS A	4.8	34.6	0.64	0.72	50.2
East: A	Auburn R	Road											
4	L2	362	2.6	362	2.6	0.566	10.8	LOS A	4.8	34.4	0.89	1.03	41.9
6	R2	290	2.6	290	2.6	0.491	11.7	LOS A	3.6	26.1	0.86	1.00	41.8
Appro	ach	652	2.6	652	2.6	0.566	11.2	LOS A	4.8	34.4	0.88	1.01	41.9
North:	Park Ro	ad											
7	L2	484	2.6	484	2.6	0.507	8.5	LOS A	3.9	28.1	0.71	0.76	47.0
8	T1	714	2.6	714	2.6	0.621	7.8	LOS A	6.2	44.6	0.77	0.75	51.8
Appro	ach	1198	2.6	1198	2.6	0.621	8.1	LOS A	6.2	44.6	0.75	0.75	50.5
All Vel	nicles	2587	2.6	2587	2.6	0.621	8.8	LOS A	6.2	44.6	0.75	0.81	48.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:56:42 AM

Site: 1 [2 FU PM - Carlingford/Park - NEW BRIDGE]

Carlingford Street / Park Road / Auburn Road (NEW BRIDGE) AM Peak Period Existing + Potts Hill + Dev - with upgrades Roundabout

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Carlingford Street													
2	T1	459	2.6	459	2.6	0.759	8.8	LOS A	8.4	60.0	0.75	0.80	50.6
3	R2	389	2.6	389	2.6	0.759	11.8	LOS A	8.4	60.0	0.81	0.84	44.8
Appro	ach	848	2.6	848	2.6	0.759	10.2	LOS A	8.4	60.0	0.78	0.82	48.7
East: /	Auburn F	Road											
4	L2	416	2.6	416	2.6	0.798	21.7	LOS B	10.0	71.3	1.00	1.25	34.0
6	R2	334	2.6	334	2.6	0.702	19.1	LOS B	6.9	49.6	1.00	1.16	36.3
Appro	ach	750	2.6	750	2.6	0.798	20.5	LOS B	10.0	71.3	1.00	1.21	35.0
North:	Park Ro	ad											
7	L2	557	2.6	557	2.6	0.624	10.6	LOS A	6.3	45.4	0.84	0.86	44.6
8	T1	821	2.6	821	2.6	0.758	10.9	LOS A	10.9	78.1	0.94	0.92	49.8
Appro	ach	1378	2.6	1378	2.6	0.758	10.8	LOS A	10.9	78.1	0.90	0.90	48.4
All Vel	hicles	2976	2.6	2976	2.6	0.798	13.1	LOS A	10.9	78.1	0.89	0.95	45.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:56:59 AM

V Site: 1 [2 FU PM - Carlingford/Park - NEW BRIDGE - Dev]

Carlingford Street / Park Road / Auburn Road (NEW BRIDGE) AM Peak Period Existing + Potts Hill + Dev - with upgrades Roundabout

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Carlingford Street													
2	T1	459	2.6	459	2.6	0.760	8.8	LOS A	8.4	60.2	0.75	0.80	50.5
3	R2	390	2.6	390	2.6	0.760	11.9	LOS A	8.4	60.2	0.81	0.84	44.8
Appro	ach	849	2.6	849	2.6	0.760	10.2	LOS A	8.4	60.2	0.78	0.82	48.7
East: /	Auburn R	oad											
4	L2	417	2.6	417	2.6	0.801	21.9	LOS B	10.0	71.9	1.00	1.25	33.9
6	R2	334	2.6	334	2.6	0.702	19.1	LOS B	7.0	49.7	1.00	1.16	36.2
Appro	ach	751	2.6	751	2.6	0.801	20.7	LOS B	10.0	71.9	1.00	1.21	34.9
North:	Park Ro	ad											
7	L2	560	2.6	560	2.6	0.627	10.7	LOS A	6.4	45.9	0.84	0.87	44.5
8	T1	821	2.6	821	2.6	0.759	11.0	LOS A	10.9	78.3	0.94	0.92	49.8
Appro	ach	1381	2.6	1381	2.6	0.759	10.9	LOS A	10.9	78.3	0.90	0.90	48.3
All Vel	hicles	2981	2.6	2981	2.6	0.801	13.1	LOS A	10.9	78.3	0.89	0.96	45.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Wednesday, 16 August 2017 11:57:15 AM